Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Standard enthalpy of formation
(of compound) change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states, and at a pressure of 1 bar (100 kPa)

In chemistry and thermodynamics, the standard enthalpy of formation (ΔfH°) of a compound is the enthalpy change when forming 1 mole of the substance from its elements in their standard states at a pressure of 1 bar (100 kPa), as recommended by IUPAC. Standard states vary: gases obey the ideal gas equation, solutes have 1 M concentration, and pure substances are liquids or solids at 1 bar. Elements in their reference forms (e.g., oxygen gas, graphite carbon) have zero enthalpy of formation. For example, the formation of carbon dioxide from graphite and oxygen gases is standardized at 298 K, with units typically in kilojoule per mole.

We don't have any images related to Standard enthalpy of formation yet.
We don't have any YouTube videos related to Standard enthalpy of formation yet.
We don't have any PDF documents related to Standard enthalpy of formation yet.
We don't have any Books related to Standard enthalpy of formation yet.
We don't have any archived web articles related to Standard enthalpy of formation yet.

Hess' law

For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction. This is true because enthalpy is a state function, whose value for an overall process depends only on the initial and final states and not on any intermediate states. Examples are given in the following sections.

Ionic compounds: Born–Haber cycle

For ionic compounds, the standard enthalpy of formation is equivalent to the sum of several terms included in the Born–Haber cycle. For example, the formation of lithium fluoride,

Li ( s ) + 1 2 F 2 ( g ) ⟶ LiF ( s ) {\displaystyle {\ce {Li(s) + 1/2 F2(g) -> LiF(s)}}}

may be considered as the sum of several steps, each with its own enthalpy (or energy, approximately):

  1. Hsub, the standard enthalpy of atomization (or sublimation) of solid lithium.
  2. IELi, the first ionization energy of gaseous lithium.
  3. B(F–F), the standard enthalpy of atomization (or bond energy) of fluorine gas.
  4. EAF, the electron affinity of a fluorine atom.
  5. UL, the lattice energy of lithium fluoride.

The sum of these enthalpies give the standard enthalpy of formation (ΔfH) of lithium fluoride:

Δ H f = Δ H sub + IE Li + 1 2 B(F–F) − EA F + U L . {\displaystyle \Delta H_{\text{f}}=\Delta H_{\text{sub}}+{\text{IE}}_{\text{Li}}+{\frac {1}{2}}{\text{B(F–F)}}-{\text{EA}}_{\text{F}}+{\text{U}}_{\text{L}}.}

In practice, the enthalpy of formation of lithium fluoride can be determined experimentally, but the lattice energy cannot be measured directly. The equation is therefore rearranged to evaluate the lattice energy:3

− U L = Δ H sub + IE Li + 1 2 B(F–F) − EA F − Δ H f . {\displaystyle -U_{\text{L}}=\Delta H_{\text{sub}}+{\text{IE}}_{\text{Li}}+{\frac {1}{2}}{\text{B(F–F)}}-{\text{EA}}_{\text{F}}-\Delta H_{\text{f}}.}

Organic compounds

The formation reactions for most organic compounds are hypothetical. For instance, carbon and hydrogen will not directly react to form methane (CH4), so that the standard enthalpy of formation cannot be measured directly. However the standard enthalpy of combustion is readily measurable using bomb calorimetry. The standard enthalpy of formation is then determined using Hess's law. The combustion of methane:

CH 4 + 2 O 2 ⟶ CO 2 + 2 H 2 O {\displaystyle {\ce {CH4 + 2 O2 -> CO2 + 2 H2O}}}

is equivalent to the sum of the hypothetical decomposition into elements followed by the combustion of the elements to form carbon dioxide (CO2) and water (H2O):

CH 4 ⟶ C + 2 H 2 {\displaystyle {\ce {CH4 -> C + 2H2}}} C + O 2 ⟶ CO 2 {\displaystyle {\ce {C + O2 -> CO2}}} 2 H 2 + O 2 ⟶ 2 H 2 O {\displaystyle {\ce {2H2 + O2 -> 2H2O}}}

Applying Hess's law,

Δ comb H ⊖ ( CH 4 ) = [ Δ f H ⊖ ( CO 2 ) + 2 Δ f H ⊖ ( H 2 O ) ] − Δ f H ⊖ ( CH 4 ) . {\displaystyle \Delta _{\text{comb}}H^{\ominus }({\text{CH}}_{4})=[\Delta _{\text{f}}H^{\ominus }({\text{CO}}_{2})+2\Delta _{\text{f}}H^{\ominus }({\text{H}}_{2}{\text{O}})]-\Delta _{\text{f}}H^{\ominus }({\text{CH}}_{4}).}

Solving for the standard of enthalpy of formation,

Δ f H ⊖ ( CH 4 ) = [ Δ f H ⊖ ( CO 2 ) + 2 Δ f H ⊖ ( H 2 O ) ] − Δ comb H ⊖ ( CH 4 ) . {\displaystyle \Delta _{\text{f}}H^{\ominus }({\text{CH}}_{4})=[\Delta _{\text{f}}H^{\ominus }({\text{CO}}_{2})+2\Delta _{\text{f}}H^{\ominus }({\text{H}}_{2}{\text{O}})]-\Delta _{\text{comb}}H^{\ominus }({\text{CH}}_{4}).}

The value of ⁠ Δ f H ⊖ ( CH 4 ) {\displaystyle \Delta _{\text{f}}H^{\ominus }({\text{CH}}_{4})} ⁠ is determined to be −74.8 kJ/mol. The negative sign shows that the reaction, if it were to proceed, would be exothermic; that is, methane is enthalpically more stable than hydrogen gas and carbon.

It is possible to predict heats of formation for simple unstrained organic compounds with the heat of formation group additivity method.

Use in calculation for other reactions

The standard enthalpy change of any reaction can be calculated from the standard enthalpies of formation of reactants and products using Hess's law. A given reaction is considered as the decomposition of all reactants into elements in their standard states, followed by the formation of all products. The heat of reaction is then minus the sum of the standard enthalpies of formation of the reactants (each being multiplied by its respective stoichiometric coefficient, ν) plus the sum of the standard enthalpies of formation of the products (each also multiplied by its respective stoichiometric coefficient), as shown in the equation below:4

Δ r H ⊖ = ∑ ν Δ f H ⊖ ( products ) − ∑ ν Δ f H ⊖ ( reactants ) . {\displaystyle \Delta _{\text{r}}H^{\ominus }=\sum \nu \Delta _{\text{f}}H^{\ominus }({\text{products}})-\sum \nu \Delta _{\text{f}}H^{\ominus }({\text{reactants}}).}

If the standard enthalpy of the products is less than the standard enthalpy of the reactants, the standard enthalpy of reaction is negative. This implies that the reaction is exothermic. The converse is also true; the standard enthalpy of reaction is positive for an endothermic reaction. This calculation has a tacit assumption of ideal solution between reactants and products where the enthalpy of mixing is zero.

For example, for the combustion of methane, CH 4 + 2 O 2 ⟶ CO 2 + 2 H 2 O {\displaystyle {\ce {CH4 + 2O2 -> CO2 + 2H2O}}} :

Δ r H ⊖ = [ Δ f H ⊖ ( CO 2 ) + 2 Δ f H ⊖ ( H 2 O ) ] − [ Δ f H ⊖ ( CH 4 ) + 2 Δ f H ⊖ ( O 2 ) ] . {\displaystyle \Delta _{\text{r}}H^{\ominus }=[\Delta _{\text{f}}H^{\ominus }({\text{CO}}_{2})+2\Delta _{\text{f}}H^{\ominus }({\text{H}}_{2}{}{\text{O}})]-[\Delta _{\text{f}}H^{\ominus }({\text{CH}}_{4})+2\Delta _{\text{f}}H^{\ominus }({\text{O}}_{2})].}

However O 2 {\displaystyle {\ce {O2}}} is an element in its standard state, so that Δ f H ⊖ ( O 2 ) = 0 {\displaystyle \Delta _{\text{f}}H^{\ominus }({\text{O}}_{2})=0} , and the heat of reaction is simplified to

Δ r H ⊖ = [ Δ f H ⊖ ( CO 2 ) + 2 Δ f H ⊖ ( H 2 O ) ] − Δ f H ⊖ ( CH 4 ) , {\displaystyle \Delta _{\text{r}}H^{\ominus }=[\Delta _{\text{f}}H^{\ominus }({\text{CO}}_{2})+2\Delta _{\text{f}}H^{\ominus }({\text{H}}_{2}{}{\text{O}})]-\Delta _{\text{f}}H^{\ominus }({\text{CH}}_{4}),}

which is the equation in the previous section for the enthalpy of combustion Δ comb H ⊖ {\displaystyle \Delta _{\text{comb}}H^{\ominus }} .

Key concepts for enthalpy calculations

  • When a reaction is reversed, the magnitude of ΔH stays the same, but the sign changes.
  • When the balanced equation for a reaction is multiplied by an integer, the corresponding value of ΔH must be multiplied by that integer as well.
  • The change in enthalpy for a reaction can be calculated from the enthalpies of formation of the reactants and the products
  • Elements in their standard states make no contribution to the enthalpy calculations for the reaction, since the enthalpy of an element in its standard state is zero. Allotropes of an element other than the standard state generally have non-zero standard enthalpies of formation.

Examples: standard enthalpies of formation at 25 °C

Thermochemical properties of selected substances at 298.15 K and 1 atm

Inorganic substances

SpeciesPhaseChemical formulaΔfH⦵ /(kJ/mol)
AluminiumSolidAl0
Aluminium chlorideSolidAlCl3−705.63
Aluminium oxideSolidAl2O3−1675.5
Aluminium hydroxideSolidAl(OH)3−1277
Aluminium sulphateSolidAl2(SO4)3−3440
Barium chlorideSolidBaCl2−858.6
Barium carbonateSolidBaCO3−1216
Barium hydroxideSolidBa(OH)2−944.7
Barium oxideSolidBaO−548.1
Barium sulfateSolidBaSO4−1473.3
BerylliumSolidBe0
Beryllium hydroxideSolidBe(OH)2−903
Beryllium oxideSolidBeO−609.4
Boron trichlorideSolidBCl3−402.96
BromineLiquidBr20
Bromide ionAqueousBr−−121
BromineGasBr111.884
BromineGasBr230.91
Bromine trifluorideGasBrF3−255.60
Hydrogen bromideGasHBr−36.29
CadmiumSolidCd0
Cadmium oxideSolidCdO−258
Cadmium hydroxideSolidCd(OH)2−561
Cadmium sulfideSolidCdS−162
Cadmium sulfateSolidCdSO4−935
CaesiumSolidCs0
CaesiumGasCs76.50
CaesiumLiquidCs2.09
Caesium(I) ionGasCs+457.964
Caesium chlorideSolidCsCl−443.04
CalciumSolidCa0
CalciumGasCa178.2
Calcium(II) ionGasCa2+1925.90
Calcium(II) ionAqueousCa2+−542.7
Calcium carbideSolidCaC2−59.8
Calcium carbonate (Calcite)SolidCaCO3−1206.9
Calcium chlorideSolidCaCl2−795.8
Calcium chlorideAqueousCaCl2−877.3
Calcium phosphateSolidCa3(PO4)2−4132
Calcium fluorideSolidCaF2−1219.6
Calcium hydrideSolidCaH2−186.2
Calcium hydroxideSolidCa(OH)2−986.09
Calcium hydroxideAqueousCa(OH)2−1002.82
Calcium oxideSolidCaO−635.09
Calcium sulfateSolidCaSO4−1434.52
Calcium sulfideSolidCaS−482.4
WollastoniteSolidCaSiO3−1630
Carbon (Graphite)SolidC0
Carbon (Diamond)SolidC1.9
CarbonGasC716.67
Carbon dioxideGasCO2−393.509
Carbon disulfideLiquidCS289.41
Carbon disulfideGasCS2116.7
Carbon monoxideGasCO−110.525
Carbonyl chloride (Phosgene)GasCOCl2−218.8
Carbon dioxide (un–ionized)AqueousCO2(aq)−419.26
Bicarbonate ionAqueousHCO3–−689.93
Carbonate ionAqueousCO32–−675.23
Monatomic chlorineGasCl121.7
Chloride ionAqueousCl−−167.2
ChlorineGasCl20
ChromiumSolidCr0
CopperSolidCu0
Copper(II) bromideSolidCuBr2−138.490
Copper(II) chlorideSolidCuCl2−217.986
Copper(II) oxideSolidCuO−155.2
Copper(II) sulfateAqueousCuSO4−769.98
FluorineGasF20
Monatomic hydrogenGasH218
HydrogenGasH20
WaterGasH2O−241.818
WaterLiquidH2O−285.8
Hydrogen ionAqueousH+0
Hydroxide ionAqueousOH−−230
Hydrogen peroxideLiquidH2O2−187.8
Phosphoric acidLiquidH3PO4−1288
Hydrogen cyanideGasHCN130.5
Hydrogen bromideLiquidHBr−36.3
Hydrogen chlorideGasHCl−92.30
Hydrogen chlorideAqueousHCl−167.2
Hydrogen fluorideGasHF−273.3
Hydrogen iodideGasHI26.5
IodineSolidI20
IodineGasI262.438
IodineAqueousI223
Iodide ionAqueousI−−55
IronSolidFe0
Iron carbide (Cementite)SolidFe3C5.4
Iron(II) carbonate (Siderite)SolidFeCO3−750.6
Iron(III) chlorideSolidFeCl3−399.4
Iron(II) oxide (Wüstite)SolidFeO−272
Iron(II,III) oxide (Magnetite)SolidFe3O4−1118.4
Iron(III) oxide (Hematite)SolidFe2O3−824.2
Iron(II) sulfateSolidFeSO4−929
Iron(III) sulfateSolidFe2(SO4)3−2583
Iron(II) sulfideSolidFeS−102
PyriteSolidFeS2−178
LeadSolidPb0
Lead dioxideSolidPbO2−277
Lead sulfideSolidPbS−100
Lead sulfateSolidPbSO4−920
Lead(II) nitrateSolidPb(NO3)2−452
Lead(II) sulfateSolidPbSO4−920
Lithium fluorideSolidLiF−616.93
MagnesiumSolidMg0
Magnesium ionAqueousMg2+−466.85
Magnesium carbonateSolidMgCO3−1095.797
Magnesium chlorideSolidMgCl2−641.8
Magnesium hydroxideSolidMg(OH)2−924.54
Magnesium hydroxideAqueousMg(OH)2−926.8
Magnesium oxideSolidMgO−601.6
Magnesium sulfateSolidMgSO4−1278.2
ManganeseSolidMn0
Manganese(II) oxideSolidMnO−384.9
Manganese(IV) oxideSolidMnO2−519.7
Manganese(III) oxideSolidMn2O3−971
Manganese(II,III) oxideSolidMn3O4−1387
PermanganateAqueousMnO−4−543
Mercury(II) oxide (red)SolidHgO−90.83
Mercury sulfide (red, cinnabar)SolidHgS−58.2
NitrogenGasN20
Ammonia (ammonium hydroxide)AqueousNH3 (NH4OH)−80.8
AmmoniaGasNH3−46.1
Ammonium nitrateSolidNH4NO3−365.6
Ammonium chlorideSolidNH4Cl−314.55
Nitrogen dioxideGasNO233.2
HydrazineGasN2H495.4
HydrazineLiquidN2H450.6
Nitrous oxideGasN2O82.05
Nitric oxideGasNO90.29
Dinitrogen tetroxideGasN2O49.16
Dinitrogen pentoxideSolidN2O5−43.1
Dinitrogen pentoxideGasN2O511.3
Nitric acidAqueousHNO3−207
Monatomic oxygenGasO249
OxygenGasO20
OzoneGasO3143
White phosphorusSolidP40
Red phosphorusSolidP−17.45
Black phosphorusSolidP−39.36
Phosphorus trichlorideLiquidPCl3−319.7
Phosphorus trichlorideGasPCl3−278
Phosphorus pentachlorideSolidPCl5−440
Phosphorus pentachlorideGasPCl5−321
Phosphorus pentoxideSolidP2O5−1505.57
Potassium bromideSolidKBr−392.2
Potassium carbonateSolidK2CO3−1150
Potassium chlorateSolidKClO3−391.4
Potassium chlorideSolidKCl−436.68
Potassium fluorideSolidKF−562.6
Potassium oxideSolidK2O−363
Potassium nitrateSolidKNO3−494.5
Potassium perchlorateSolidKClO4−430.12
SiliconGasSi368.2
Silicon carbideSolidSiC−74.4,8 −71.59
Silicon tetrachlorideLiquidSiCl4−640.1
Silica (Quartz)SolidSiO2−910.86
Silver bromideSolidAgBr−99.5
Silver chlorideSolidAgCl−127.01
Silver iodideSolidAgI−62.4
Silver oxideSolidAg2O−31.1
Silver sulfideSolidAg2S−31.8
SodiumSolidNa0
SodiumGasNa107.5
Sodium bicarbonateSolidNaHCO3−950.8
Sodium carbonateSolidNa2CO3−1130.77
Sodium chlorideAqueousNaCl−407.27
Sodium chlorideSolidNaCl−411.12
Sodium chlorideLiquidNaCl−385.92
Sodium chlorideGasNaCl−181.42
Sodium chlorateSolidNaClO3−365.4
Sodium fluorideSolidNaF−569.0
Sodium hydroxideAqueousNaOH−469.15
Sodium hydroxideSolidNaOH−425.93
Sodium hypochloriteSolidNaOCl−347.1
Sodium nitrateAqueousNaNO3−446.2
Sodium nitrateSolidNaNO3−424.8
Sodium oxideSolidNa2O−414.2
Sulfur (monoclinic)SolidS80.3
Sulfur (rhombic)SolidS80
Hydrogen sulfideGasH2S−20.63
Sulfur dioxideGasSO2−296.84
Sulfur trioxideGasSO3−395.7
Sulfuric acidLiquidH2SO4−814
TitaniumGasTi468
Titanium tetrachlorideGasTiCl4−763.2
Titanium tetrachlorideLiquidTiCl4−804.2
Titanium dioxideSolidTiO2−944.7
ZincGasZn130.7
Zinc chlorideSolidZnCl2−415.1
Zinc oxideSolidZnO−348.0
Zinc sulfateSolidZnSO4−980.14

Aliphatic hydrocarbons

FormulaNameΔfH⦵ /(kcal/mol)ΔfH⦵ /(kJ/mol)
Straight-chain
CH4Methane−17.9−74.9
C2H6Ethane−20.0−83.7
C2H4Ethylene12.552.5
C2H2Acetylene54.2226.8
C3H8Propane−25.0−104.6
C4H10n-Butane−30.0−125.5
C5H12n-Pentane−35.1−146.9
C6H14n-Hexane−40.0−167.4
C7H16n-Heptane−44.9−187.9
C8H18n-Octane−49.8−208.4
C9H20n-Nonane−54.8−229.3
C10H22n-Decane−59.6−249.4
C4 Alkane branched isomers
C4H10Isobutane (methylpropane)−32.1−134.3
C5 Alkane branched isomers
C5H12Neopentane (dimethylpropane)−40.1−167.8
C5H12Isopentane (methylbutane)−36.9−154.4
C6 Alkane branched isomers
C6H142,2-Dimethylbutane−44.5−186.2
C6H142,3-Dimethylbutane−42.5−177.8
C6H142-Methylpentane (isohexane)−41.8−174.9
C6H143-Methylpentane−41.1−172.0
C7 Alkane branched isomers
C7H162,2-Dimethylpentane−49.2−205.9
C7H162,2,3-Trimethylbutane−49.0−205.0
C7H163,3-Dimethylpentane−48.1−201.3
C7H162,3-Dimethylpentane−47.3−197.9
C7H162,4-Dimethylpentane−48.2−201.7
C7H162-Methylhexane−46.5−194.6
C7H163-Methylhexane−45.7−191.2
C7H163-Ethylpentane−45.3−189.5
C8 Alkane branched isomers
C8H182,3-Dimethylhexane−55.1−230.5
C8H182,2,3,3-Tetramethylbutane−53.9−225.5
C8H182,2-Dimethylhexane−53.7−224.7
C8H182,2,4-Trimethylpentane (isooctane)−53.5−223.8
C8H182,5-Dimethylhexane−53.2−222.6
C8H182,2,3-Trimethylpentane−52.6−220.1
C8H183,3-Dimethylhexane−52.6−220.1
C8H182,4-Dimethylhexane−52.4−219.2
C8H182,3,4-Trimethylpentane−51.9−217.1
C8H182,3,3-Trimethylpentane−51.7−216.3
C8H182-Methylheptane−51.5−215.5
C8H183-Ethyl-3-Methylpentane−51.4−215.1
C8H183,4-Dimethylhexane−50.9−213.0
C8H183-Ethyl-2-Methylpentane−50.4−210.9
C8H183-Methylheptane−60.3−252.5
C8H184-Methylheptane??
C8H183-Ethylhexane??
C9 Alkane branched isomers (selected)
C9H202,2,4,4-Tetramethylpentane−57.8−241.8
C9H202,2,3,3-Tetramethylpentane−56.7−237.2
C9H202,2,3,4-Tetramethylpentane−56.6−236.8
C9H202,3,3,4-Tetramethylpentane−56.4−236.0
C9H203,3-Diethylpentane−55.7−233.0

Other organic compounds

SpeciesPhaseChemical formulaΔfH⦵ /(kJ/mol)
AcetoneLiquidC3H6O−248.4
BenzeneLiquidC6H648.95
Benzoic acidSolidC7H6O2−385.2
Carbon tetrachlorideLiquidCCl4−135.4
Carbon tetrachlorideGasCCl4−95.98
EthanolLiquidC2H5OH−277.0
EthanolGasC2H5OH−235.3
GlucoseSolidC6H12O6−1271
IsopropanolGasC3H7OH−318.1
Methanol (methyl alcohol)LiquidCH3OH−238.4
Methanol (methyl alcohol)GasCH3OH−201.0
Methyl linoleate (Biodiesel)GasC19H34O2−356.3
SucroseSolidC12H22O11−2226.1
Trichloromethane (Chloroform)LiquidCHCl3−134.47
Trichloromethane (Chloroform)GasCHCl3−103.18
Vinyl chlorideSolidC2H3Cl−94.12

See also

  • Zumdahl, Steven (2009). Chemical Principles (6th ed.). Boston. New York: Houghton Mifflin. pp. 384–387. ISBN 978-0-547-19626-8.

References

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "standard pressure". doi:10.1351/goldbook.S05921 /wiki/International_Union_of_Pure_and_Applied_Chemistry

  2. Oxtoby, David W; Pat Gillis, H; Campion, Alan (2011). Principles of Modern Chemistry. Cengage Learning. p. 547. ISBN 978-0-8400-4931-5. 978-0-8400-4931-5

  3. Moore, Stanitski, and Jurs. Chemistry: The Molecular Science. 3rd edition. 2008. ISBN 0-495-10521-X. pages 320–321. /wiki/ISBN_(identifier)

  4. "Enthalpies of Reaction". www.science.uwaterloo.ca. Archived from the original on 25 October 2017. Retrieved 2 May 2018. http://www.science.uwaterloo.ca/~cchieh/cact/c120/heatreac.html

  5. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. p. 392. ISBN 978-0-13-039913-7. 978-0-13-039913-7

  6. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. p. 392. ISBN 978-0-13-039913-7. 978-0-13-039913-7

  7. Green, D.W., ed. (2007). Perry's Chemical Engineers' Handbook (8th ed.). Mcgraw-Hill. pp. 2–191. ISBN 9780071422949. 9780071422949

  8. Kleykamp, H. (1998). "Gibbs Energy of Formation of SiC: A contribution to the Thermodynamic Stability of the Modifications". Berichte der Bunsengesellschaft für physikalische Chemie. 102 (9): 1231–1234. doi:10.1002/bbpc.19981020928. /wiki/Doi_(identifier)

  9. "Silicon Carbide, Alpha (SiC)". March 1967. Retrieved 5 February 2019. https://janaf.nist.gov/tables/C-100.html