Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Euler function
The mathematical function ∏ₖ₌₁^∞ (1−𝑞ᵏ)

In mathematics, the Euler function is given by

ϕ ( q ) = ∏ k = 1 ∞ ( 1 − q k ) , | q | < 1. {\displaystyle \phi (q)=\prod _{k=1}^{\infty }(1-q^{k}),\quad |q|<1.}

Named after Leonhard Euler, it is a model example of a q-series and provides the prototypical example of a relation between combinatorics and complex analysis.

Related Image Collections Add Image
We don't have any YouTube videos related to Euler function yet.
We don't have any PDF documents related to Euler function yet.
We don't have any Books related to Euler function yet.
We don't have any archived web articles related to Euler function yet.

Properties

The coefficient p ( k ) {\displaystyle p(k)} in the formal power series expansion for 1 / ϕ ( q ) {\displaystyle 1/\phi (q)} gives the number of partitions of k. That is,

1 ϕ ( q ) = ∑ k = 0 ∞ p ( k ) q k {\displaystyle {\frac {1}{\phi (q)}}=\sum _{k=0}^{\infty }p(k)q^{k}}

where p {\displaystyle p} is the partition function.

The Euler identity, also known as the Pentagonal number theorem, is

ϕ ( q ) = ∑ n = − ∞ ∞ ( − 1 ) n q ( 3 n 2 − n ) / 2 . {\displaystyle \phi (q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{(3n^{2}-n)/2}.}

( 3 n 2 − n ) / 2 {\displaystyle (3n^{2}-n)/2} is a pentagonal number.

The Euler function is related to the Dedekind eta function as

ϕ ( e 2 π i τ ) = e − π i τ / 12 η ( τ ) . {\displaystyle \phi (e^{2\pi i\tau })=e^{-\pi i\tau /12}\eta (\tau ).}

The Euler function may be expressed as a q-Pochhammer symbol:

ϕ ( q ) = ( q ; q ) ∞ . {\displaystyle \phi (q)=(q;q)_{\infty }.}

The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding

ln ⁡ ( ϕ ( q ) ) = − ∑ n = 1 ∞ 1 n q n 1 − q n , {\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {1}{n}}\,{\frac {q^{n}}{1-q^{n}}},}

which is a Lambert series with coefficients -1/n. The logarithm of the Euler function may therefore be expressed as

ln ⁡ ( ϕ ( q ) ) = ∑ n = 1 ∞ b n q n {\displaystyle \ln(\phi (q))=\sum _{n=1}^{\infty }b_{n}q^{n}}

where b n = − ∑ d | n 1 d = {\displaystyle b_{n}=-\sum _{d|n}{\frac {1}{d}}=} -[1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, 15/8, 13/9, 18/10, ...] (see OEIS A000203)

On account of the identity σ ( n ) = ∑ d | n d = ∑ d | n n d {\displaystyle \sigma (n)=\sum _{d|n}d=\sum _{d|n}{\frac {n}{d}}} , where σ ( n ) {\displaystyle \sigma (n)} is the sum-of-divisors function, this may also be written as

ln ⁡ ( ϕ ( q ) ) = − ∑ n = 1 ∞ σ ( n ) n   q n {\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {\sigma (n)}{n}}\ q^{n}} .

Also if a , b ∈ R + {\displaystyle a,b\in \mathbb {R} ^{+}} and a b = π 2 {\displaystyle ab=\pi ^{2}} , then1

a 1 / 4 e − a / 12 ϕ ( e − 2 a ) = b 1 / 4 e − b / 12 ϕ ( e − 2 b ) . {\displaystyle a^{1/4}e^{-a/12}\phi (e^{-2a})=b^{1/4}e^{-b/12}\phi (e^{-2b}).}

Special values

The next identities come from Ramanujan's Notebooks:2

ϕ ( e − π ) = e π / 24 Γ ( 1 4 ) 2 7 / 8 π 3 / 4 {\displaystyle \phi (e^{-\pi })={\frac {e^{\pi /24}\Gamma \left({\frac {1}{4}}\right)}{2^{7/8}\pi ^{3/4}}}} ϕ ( e − 2 π ) = e π / 12 Γ ( 1 4 ) 2 π 3 / 4 {\displaystyle \phi (e^{-2\pi })={\frac {e^{\pi /12}\Gamma \left({\frac {1}{4}}\right)}{2\pi ^{3/4}}}} ϕ ( e − 4 π ) = e π / 6 Γ ( 1 4 ) 2 11 / 8 π 3 / 4 {\displaystyle \phi (e^{-4\pi })={\frac {e^{\pi /6}\Gamma \left({\frac {1}{4}}\right)}{2^{{11}/8}\pi ^{3/4}}}} ϕ ( e − 8 π ) = e π / 3 Γ ( 1 4 ) 2 29 / 16 π 3 / 4 ( 2 − 1 ) 1 / 4 {\displaystyle \phi (e^{-8\pi })={\frac {e^{\pi /3}\Gamma \left({\frac {1}{4}}\right)}{2^{29/16}\pi ^{3/4}}}({\sqrt {2}}-1)^{1/4}}

Using the Pentagonal number theorem, exchanging sum and integral, and then invoking complex-analytic methods, one derives3

∫ 0 1 ϕ ( q ) d q = 8 3 23 π sinh ⁡ ( 23 π 6 ) 2 cosh ⁡ ( 23 π 3 ) − 1 . {\displaystyle \int _{0}^{1}\phi (q)\,\mathrm {d} q={\frac {8{\sqrt {\frac {3}{23}}}\pi \sinh \left({\frac {{\sqrt {23}}\pi }{6}}\right)}{2\cosh \left({\frac {{\sqrt {23}}\pi }{3}}\right)-1}}.}

References

  1. Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction"

  2. Berndt, Bruce C. (1998). Ramanujan's Notebooks Part V. Springer. ISBN 978-1-4612-7221-2. p. 326 978-1-4612-7221-2

  3. Sloane, N. J. A. (ed.). "Sequence A258232". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. /wiki/Neil_Sloane