Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Eulerian number
Polynomial sequence

In combinatorics, the Eulerian number A ( n , k ) {\textstyle A(n,k)} is the number of permutations of the numbers 1 to n {\textstyle n} in which exactly k {\textstyle k} elements are greater than the previous element (permutations with k {\textstyle k} "ascents").

Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis.

Other notations for A ( n , k ) {\textstyle A(n,k)} are E ( n , k ) {\textstyle E(n,k)} and ⟨ n k ⟩ {\displaystyle \textstyle \left\langle {n \atop k}\right\rangle } .

We don't have any images related to Eulerian number yet.
We don't have any YouTube videos related to Eulerian number yet.
We don't have any PDF documents related to Eulerian number yet.
We don't have any Books related to Eulerian number yet.
We don't have any archived web articles related to Eulerian number yet.

Definition

The Eulerian polynomials A n ( t ) {\displaystyle A_{n}(t)} are defined by the exponential generating function

∑ n = 0 ∞ A n ( t ) x n n ! = t − 1 t − e ( t − 1 ) x = ( 1 − e ( t − 1 ) x − 1 t − 1 ) − 1 . {\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-e^{(t-1)\,x}}}=\left(1-{\frac {e^{(t-1)x}-1}{t-1}}\right)^{-1}.}

The Eulerian numbers A ( n , k ) {\displaystyle A(n,k)} may be defined as the coefficients of the Eulerian polynomials:

A n ( t ) = ∑ k = 0 n A ( n , k ) t k . {\displaystyle A_{n}(t)=\sum _{k=0}^{n}A(n,k)\,t^{k}.}

An explicit formula for A ( n , k ) {\textstyle A(n,k)} is1

A ( n , k ) = ∑ i = 0 k ( − 1 ) i ( n + 1 i ) ( k + 1 − i ) n . {\displaystyle A(n,k)=\sum _{i=0}^{k}(-1)^{i}{\binom {n+1}{i}}(k+1-i)^{n}.}

Basic properties

  • For fixed n {\textstyle n} there is a single permutation which has 0 ascents: ( n , n − 1 , n − 2 , … , 1 ) {\textstyle (n,n-1,n-2,\ldots ,1)} . Indeed, as ( n 0 ) = 1 {\displaystyle {\tbinom {n}{0}}=1} for all n {\displaystyle n} , A ( n , 0 ) = 1 {\textstyle A(n,0)=1} . This formally includes the empty collection of numbers, n = 0 {\textstyle n=0} . And so A 0 ( t ) = A 1 ( t ) = 1 {\textstyle A_{0}(t)=A_{1}(t)=1} .
  • For k = 1 {\textstyle k=1} the explicit formula implies A ( n , 1 ) = 2 n − ( n + 1 ) {\textstyle A(n,1)=2^{n}-(n+1)} , a sequence in n {\displaystyle n} that reads 0 , 0 , 1 , 4 , 11 , 26 , 57 , … {\textstyle 0,0,1,4,11,26,57,\dots } .
  • Fully reversing a permutation with k {\textstyle k} ascents creates another permutation in which there are n − k − 1 {\textstyle n-k-1} ascents. Therefore A ( n , k ) = A ( n , n − k − 1 ) {\textstyle A(n,k)=A(n,n-k-1)} . So there is also a single permutation which has n − 1 {\textstyle n-1} ascents, namely the rising permutation ( 1 , 2 , … , n ) {\textstyle (1,2,\ldots ,n)} . So also A ( n , n − 1 ) {\textstyle A(n,n-1)} equals 1 {\displaystyle 1} .
  • A lavish upper bound is A ( n , k ) ≤ ( k + 1 ) n ⋅ ( n + 2 ) k {\textstyle A(n,k)\leq (k+1)^{n}\cdot (n+2)^{k}} . Between the bounds just discussed, the value exceeds 1 {\displaystyle 1} .
  • For k ≥ n > 0 {\textstyle k\geq n>0} , the values are formally zero, meaning many sums over k {\textstyle k} can be written with an upper index only up to n − 1 {\textstyle n-1} . It also means that the polynomials A n ( t ) {\displaystyle A_{n}(t)} are really of degree n − 1 {\textstyle n-1} for n > 0 {\textstyle n>0} .

A tabulation of the numbers in a triangular array is called the Euler triangle or Euler's triangle. It shares some common characteristics with Pascal's triangle. Values of A ( n , k ) {\textstyle A(n,k)} (sequence A008292 in the OEIS) for 0 ≤ n ≤ 9 {\textstyle 0\leq n\leq 9} are:

 kn 012345678
01
11
211
3141
4111111
512666261
6157302302571
711201191241611911201
812474293156191561942932471
91502146088823415619088234146085021

Computation

For larger values of n {\textstyle n} , A ( n , k ) {\textstyle A(n,k)} can also be calculated using the recursive formula2

A ( n , k ) = ( n − k ) A ( n − 1 , k − 1 ) + ( k + 1 ) A ( n − 1 , k ) . {\displaystyle A(n,k)=(n-k)\,A(n-1,k-1)+(k+1)\,A(n-1,k).}

This formula can be motivated from the combinatorial definition and thus serves as a natural starting point for the theory.

For small values of n {\textstyle n} and k {\textstyle k} , the values of A ( n , k ) {\textstyle A(n,k)} can be calculated by hand. For example

nkPermutationsA(n, k)
10(1)A(1,0) = 1
20(2, 1)A(2,0) = 1
1(1, 2)A(2,1) = 1
30(3, 2, 1)A(3,0) = 1
1(1, 3, 2), (2, 1, 3), (2, 3, 1) and (3, 1, 2)A(3,1) = 4
2(1, 2, 3)A(3,2) = 1

Applying the recurrence to one example, we may find

A ( 4 , 1 ) = ( 4 − 1 ) A ( 3 , 0 ) + ( 1 + 1 ) A ( 3 , 1 ) = 3 ⋅ 1 + 2 ⋅ 4 = 11. {\displaystyle A(4,1)=(4-1)\,A(3,0)+(1+1)\,A(3,1)=3\cdot 1+2\cdot 4=11.}

Likewise, the Eulerian polynomials can be computed by the recurrence

A 0 ( t ) = 1 , {\displaystyle A_{0}(t)=1,} A n ( t ) = A n − 1 ′ ( t ) ⋅ t ( 1 − t ) + A n − 1 ( t ) ⋅ ( 1 + ( n − 1 ) t ) ,  for  n > 1. {\displaystyle A_{n}(t)=A_{n-1}'(t)\cdot t\,(1-t)+A_{n-1}(t)\cdot (1+(n-1)\,t),{\text{ for }}n>1.}

The second formula can be cast into an inductive form,

A n ( t ) = ∑ k = 0 n − 1 ( n k ) A k ( t ) ⋅ ( t − 1 ) n − 1 − k ,  for  n > 1. {\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}A_{k}(t)\cdot (t-1)^{n-1-k},{\text{ for }}n>1.}

Identities

For any property partitioning a finite set into finitely many smaller sets, the sum of the cardinalities of the smaller sets equals the cardinality of the bigger set. The Eulerian numbers partition the permutations of n {\displaystyle n} elements, so their sum equals the factorial n ! {\displaystyle n!} . I.e.

∑ k = 0 n − 1 A ( n , k ) = n ! ,  for  n > 0. {\displaystyle \sum _{k=0}^{n-1}A(n,k)=n!,{\text{ for }}n>0.}

as well as A ( 0 , 0 ) = 0 ! {\displaystyle A(0,0)=0!} . To avoid conflict with the empty sum convention, it is convenient to simply state the theorems for n > 0 {\displaystyle n>0} only.

Much more generally, for a fixed function f : R → C {\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {C} } integrable on the interval ( 0 , n ) {\displaystyle (0,n)} 3

∑ k = 0 n − 1 A ( n , k ) f ( k ) = n ! ∫ 0 1 ⋯ ∫ 0 1 f ( ⌊ x 1 + ⋯ + x n ⌋ ) d x 1 ⋯ d x n {\displaystyle \sum _{k=0}^{n-1}A(n,k)\,f(k)=n!\int _{0}^{1}\cdots \int _{0}^{1}f\left(\left\lfloor x_{1}+\cdots +x_{n}\right\rfloor \right){\mathrm {d} }x_{1}\cdots {\mathrm {d} }x_{n}}

Worpitzky's identity4 expresses x n {\textstyle x^{n}} as the linear combination of Eulerian numbers with binomial coefficients:

∑ k = 0 n − 1 A ( n , k ) ( x + k n ) = x n . {\displaystyle \sum _{k=0}^{n-1}A(n,k){\binom {x+k}{n}}=x^{n}.}

From it, it follows that

∑ k = 1 m k n = ∑ k = 0 n − 1 A ( n , k ) ( m + k + 1 n + 1 ) . {\displaystyle \sum _{k=1}^{m}k^{n}=\sum _{k=0}^{n-1}A(n,k){\binom {m+k+1}{n+1}}.}

Formulas involving alternating sums

The alternating sum of the Eulerian numbers for a fixed value of n {\textstyle n} is related to the Bernoulli number B n + 1 {\textstyle B_{n+1}}

∑ k = 0 n − 1 ( − 1 ) k A ( n , k ) = 2 n + 1 ( 2 n + 1 − 1 ) B n + 1 n + 1 ,  for  n > 0. {\displaystyle \sum _{k=0}^{n-1}(-1)^{k}A(n,k)=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},{\text{ for }}n>0.}

Furthermore,

∑ k = 0 n − 1 ( − 1 ) k A ( n , k ) ( n − 1 k ) = 0 ,  for  n > 1 {\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n-1}{k}}}=0,{\text{ for }}n>1}

and

∑ k = 0 n − 1 ( − 1 ) k A ( n , k ) ( n k ) = ( n + 1 ) B n ,  for  n > 1 {\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n}{k}}}=(n+1)B_{n},{\text{ for }}n>1}

Formulas involving the polynomials

The symmetry property implies:

A n ( t ) = t n − 1 A n ( t − 1 ) {\displaystyle A_{n}(t)=t^{n-1}A_{n}(t^{-1})}

The Eulerian numbers are involved in the generating function for the sequence of nth powers:

∑ i = 1 ∞ i n x i = 1 ( 1 − x ) n + 1 ∑ k = 0 n A ( n , k ) x k + 1 = x ( 1 − x ) n + 1 A n ( x ) {\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k+1}={\frac {x}{(1-x)^{n+1}}}A_{n}(x)}

An explicit expression for Eulerian polynomials is5

A n ( t ) = ∑ k = 0 n { n k } k ! ( t − 1 ) n − k {\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}}

where { n k } {\textstyle \left\{{n \atop k}\right\}} is the Stirling number of the second kind.

Eulerian numbers of the second order

The permutations of the multiset { 1 , 1 , 2 , 2 , … , n , n } {\textstyle \{1,1,2,2,\ldots ,n,n\}} which have the property that for each k, all the numbers appearing between the two occurrences of k in the permutation are greater than k are counted by the double factorial number ( 2 n − 1 ) ! ! {\textstyle (2n-1)!!} . The Eulerian number of the second order, denoted ⟨ ⟨ n m ⟩ ⟩ {\textstyle \left\langle \!\left\langle {n \atop m}\right\rangle \!\right\rangle } , counts the number of all such permutations that have exactly m ascents. For instance, for n = 3 there are 15 such permutations, 1 with no ascents, 8 with a single ascent, and 6 with two ascents:

332211, 221133, 221331, 223311, 233211, 113322, 133221, 331122, 331221, 112233, 122133, 112332, 123321, 133122, 122331.

The Eulerian numbers of the second order satisfy the recurrence relation, that follows directly from the above definition:

⟨ ⟨ n k ⟩ ⟩ = ( 2 n − k − 1 ) ⟨ ⟨ n − 1 k − 1 ⟩ ⟩ + ( k + 1 ) ⟨ ⟨ n − 1 k ⟩ ⟩ , {\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(2n-k-1)\left\langle \!\!\left\langle {n-1 \atop k-1}\right\rangle \!\!\right\rangle +(k+1)\left\langle \!\!\left\langle {n-1 \atop k}\right\rangle \!\!\right\rangle ,}

with initial condition for n = 0, expressed in Iverson bracket notation:

⟨ ⟨ 0 k ⟩ ⟩ = [ k = 0 ] . {\displaystyle \left\langle \!\!\left\langle {0 \atop k}\right\rangle \!\!\right\rangle =[k=0].}

Correspondingly, the Eulerian polynomial of second order, here denoted Pn (no standard notation exists for them) are

P n ( x ) := ∑ k = 0 n ⟨ ⟨ n k ⟩ ⟩ x k {\displaystyle P_{n}(x):=\sum _{k=0}^{n}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle x^{k}}

and the above recurrence relations are translated into a recurrence relation for the sequence Pn(x):

P n + 1 ( x ) = ( 2 n x + 1 ) P n ( x ) − x ( x − 1 ) P n ′ ( x ) {\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}

with initial condition P 0 ( x ) = 1. {\displaystyle P_{0}(x)=1.} . The latter recurrence may be written in a somewhat more compact form by means of an integrating factor:

( x − 1 ) − 2 n − 2 P n + 1 ( x ) = ( x ( 1 − x ) − 2 n − 1 P n ( x ) ) ′ {\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x\,(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}

so that the rational function

u n ( x ) := ( x − 1 ) − 2 n P n ( x ) {\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}

satisfies a simple autonomous recurrence:

u n + 1 = ( x 1 − x u n ) ′ , u 0 = 1 {\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1}

Whence one obtains the Eulerian polynomials of second order as P n ( x ) = ( 1 − x ) 2 n u n ( x ) {\textstyle P_{n}(x)=(1-x)^{2n}u_{n}(x)} , and the Eulerian numbers of second order as their coefficients.

The following table displays the first few second-order Eulerian numbers:

 kn 012345678
01
11
212
3186
41225824
5152328444120
61114145244003708720
7124056103212058140339845040
814941995019580064402078530434113640320
911004672601062500576550012440064110262963733920362880

The sum of the n-th row, which is also the value P n ( 1 ) {\textstyle P_{n}(1)} , is ( 2 n − 1 ) ! ! {\textstyle (2n-1)!!} .

Indexing the second-order Eulerian numbers comes in three flavors:

  • (sequence A008517 in the OEIS) following Riordan and Comtet,
  • (sequence A201637 in the OEIS) following Graham, Knuth, and Patashnik,
  • (sequence A340556 in the OEIS), extending the definition of Gessel and Stanley.

Citations

References

  1. (L. Comtet 1974, p. 243)

  2. Comtet, Louis. Advanced Combinatorics (PDF). p. 51. https://ia801306.us.archive.org/27/items/Comtet_Louis_-_Advanced_Coatorics/Comtet_Louis_-_Advanced_Combinatorics.pdf

  3. Exercise 6.65 in Concrete Mathematics by Graham, Knuth and Patashnik.

  4. Worpitzky, J. (1883). "Studien über die Bernoullischen und Eulerschen Zahlen". Journal für die reine und angewandte Mathematik. 94: 203–232. https://eudml.org/doc/148532

  5. Qi, Feng; Guo, Bai-Ni (2017-08-01). "Explicit formulas and recurrence relations for higher order Eulerian polynomials". Indagationes Mathematicae. 28 (4): 884–891. doi:10.1016/j.indag.2017.06.010. ISSN 0019-3577. https://doi.org/10.1016%2Fj.indag.2017.06.010