In theoretical physics, one often analyzes theories with supersymmetry in which F-terms play an important role. In four dimensions, the minimal N=1 supersymmetry may be written using a superspace. This superspace involves four extra fermionic coordinates θ 1 , θ 2 , θ ¯ 1 , θ ¯ 2 {\displaystyle \theta ^{1},\theta ^{2},{\bar {\theta }}^{1},{\bar {\theta }}^{2}} , transforming as a two-component spinor and its conjugate.
Every superfield—i.e. a field that depends on all coordinates of the superspace—may be expanded with respect to the new fermionic coordinates. There exists a special kind of superfields, the so-called chiral superfields, that only depend on the variables θ {\displaystyle \theta } but not their conjugates. The last term in the corresponding expansion, namely F θ 1 θ 2 {\displaystyle F\theta ^{1}\theta ^{2}} , is called the F-term. Applying an infinitesimal supersymmetry transformation to a chiral superfield results in yet another chiral superfield whose F-term, in particular, changes by a total derivative. This is significant because then ∫ d 4 x F ( x ) {\displaystyle \int {d^{4}x\,F(x)}} is invariant under SUSY transformations as long as boundary terms vanish. Thus F-terms may be used in constructing supersymmetric actions.
Manifestly-supersymmetric Lagrangians may also be written as integrals over the whole superspace. Some special terms, such as the superpotential, may be written as integrals over θ {\displaystyle \theta } s only. They are also referred to as F-terms, much like the terms in the ordinary potential that arise from these terms of the supersymmetric Lagrangian.
See also
References
Shadchin, Sergey (2007). "On F-term contribution to effective action". Journal of High Energy Physics (8). Cornell University: 052. arXiv:hep-th/0611278. Bibcode:2007JHEP...08..052S. doi:10.1088/1126-6708/2007/08/052. /wiki/ArXiv_(identifier) ↩