In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order n = 2 m {\displaystyle n=2^{m}} would have a computational complexity of O( n 2 {\displaystyle n^{2}} ). The FWHTh requires only n log n {\displaystyle n\log n} additions or subtractions.
The FWHTh is a divide-and-conquer algorithm that recursively breaks down a WHT of size n {\displaystyle n} into two smaller WHTs of size n / 2 {\displaystyle n/2} . This implementation follows the recursive definition of the 2 m × 2 m {\displaystyle 2^{m}\times 2^{m}} Hadamard matrix H m {\displaystyle H_{m}} :
H m = 1 2 ( H m − 1 H m − 1 H m − 1 − H m − 1 ) . {\displaystyle H_{m}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}H_{m-1}&H_{m-1}\\H_{m-1}&-H_{m-1}\end{pmatrix}}.}The 1 / 2 {\displaystyle 1/{\sqrt {2}}} normalization factors for each stage may be grouped together or even omitted.
The sequency-ordered, also known as Walsh-ordered, fast Walsh–Hadamard transform, FWHTw, is obtained by computing the FWHTh as above, and then rearranging the outputs.
A simple fast nonrecursive implementation of the Walsh–Hadamard transform follows from decomposition of the Hadamard transform matrix as H m = A m {\displaystyle H_{m}=A^{m}} , where A is m-th root of H m {\displaystyle H_{m}} .
Python example code
import math def fwht(a) -> None: """In-place Fast Walsh–Hadamard Transform of array a.""" assert math.log2(len(a)).is_integer(), "length of a is a power of 2" h = 1 while h < len(a): # perform FWHT for i in range(0, len(a), h * 2): for j in range(i, i + h): x = a[j] y = a[j + h] a[j] = x + y a[j + h] = x - y # normalize and increment a /= math.sqrt(2) h *= 2See also
External links
- Charles Constantine Gumas, A century old, the fast Hadamard transform proves useful in digital communications
References
Fino, B. J.; Algazi, V. R. (1976). "Unified Matrix Treatment of the Fast Walsh–Hadamard Transform". IEEE Transactions on Computers. 25 (11): 1142–1146. doi:10.1109/TC.1976.1674569. S2CID 13252360. /wiki/Doi_(identifier) ↩
Yarlagadda and Hershey, "Hadamard Matrix Analysis and Synthesis", 1997 (Springer) ↩