Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Feynman slash notation
Mathematical notation used in quantum field theory for contractions with the Dirac gamma matrices

In the study of Dirac fields in quantum field theory, Richard Feynman introduced the convenient Feynman slash notation (less commonly known as the Dirac slash notation). If A is a covariant vector (i.e., a 1-form),

A /   = d e f   γ 0 A 0 + γ 1 A 1 + γ 2 A 2 + γ 3 A 3 {\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{0}A_{0}+\gamma ^{1}A_{1}+\gamma ^{2}A_{2}+\gamma ^{3}A_{3}}

where γ are the gamma matrices. Using the Einstein summation notation, the expression is simply

A /   = d e f   γ μ A μ {\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{\mu }A_{\mu }} .
We don't have any images related to Feynman slash notation yet.
We don't have any YouTube videos related to Feynman slash notation yet.
We don't have any PDF documents related to Feynman slash notation yet.
We don't have any Books related to Feynman slash notation yet.
We don't have any archived web articles related to Feynman slash notation yet.

Identities

Using the anticommutators of the gamma matrices, one can show that for any a μ {\displaystyle a_{\mu }} and b μ {\displaystyle b_{\mu }} ,

a / a / = a μ a μ ⋅ I 4 = a 2 ⋅ I 4 a / b / + b / a / = 2 a ⋅ b ⋅ I 4 . {\displaystyle {\begin{aligned}{a\!\!\!/}{a\!\!\!/}=a^{\mu }a_{\mu }\cdot I_{4}=a^{2}\cdot I_{4}\\{a\!\!\!/}{b\!\!\!/}+{b\!\!\!/}{a\!\!\!/}=2a\cdot b\cdot I_{4}.\end{aligned}}}

where I 4 {\displaystyle I_{4}} is the identity matrix in four dimensions.

In particular,

∂ / 2 = ∂ 2 ⋅ I 4 . {\displaystyle {\partial \!\!\!/}^{2}=\partial ^{2}\cdot I_{4}.}

Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,

γ μ a / γ μ = − 2 a / γ μ a / b / γ μ = 4 a ⋅ b ⋅ I 4 γ μ a / b / c / γ μ = − 2 c / b / a / γ μ a / b / c / d / γ μ = 2 ( d / a / b / c / + c / b / a / d / ) tr ⁡ ( a / b / ) = 4 a ⋅ b tr ⁡ ( a / b / c / d / ) = 4 [ ( a ⋅ b ) ( c ⋅ d ) − ( a ⋅ c ) ( b ⋅ d ) + ( a ⋅ d ) ( b ⋅ c ) ] tr ⁡ ( a / γ μ b / γ ν ) = 4 [ a μ b ν + a ν b μ − η μ ν ( a ⋅ b ) ] tr ⁡ ( γ 5 a / b / c / d / ) = 4 i ε μ ν λ σ a μ b ν c λ d σ tr ⁡ ( γ μ a / γ ν ) = 0 tr ⁡ ( γ 5 a / b / ) = 0 tr ⁡ ( γ 0 ( a / + m ) γ 0 ( b / + m ) ) = 8 a 0 b 0 − 4 ( a ⋅ b ) + 4 m 2 tr ⁡ ( ( a / + m ) γ μ ( b / + m ) γ ν ) = 4 [ a μ b ν + a ν b μ − η μ ν ( ( a ⋅ b ) − m 2 ) ] tr ⁡ ( a / 1 . . . a / 2 n ) = tr ⁡ ( a / 2 n . . . a / 1 ) tr ⁡ ( a / 1 . . . a / 2 n + 1 ) = 0 {\displaystyle {\begin{aligned}\gamma _{\mu }{a\!\!\!/}\gamma ^{\mu }&=-2{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}\gamma ^{\mu }&=4a\cdot b\cdot I_{4}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}\gamma ^{\mu }&=-2{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}\gamma ^{\mu }&=2({d\!\!\!/}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}+{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}{d\!\!\!/})\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/})&=4a\cdot b\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4\left[(a\cdot b)(c\cdot d)-(a\cdot c)(b\cdot d)+(a\cdot d)(b\cdot c)\right]\\\operatorname {tr} ({a\!\!\!/}{\gamma ^{\mu }}{b\!\!\!/}{\gamma ^{\nu }})&=4\left[a^{\mu }b^{\nu }+a^{\nu }b^{\mu }-\eta ^{\mu \nu }(a\cdot b)\right]\\\operatorname {tr} (\gamma _{5}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4i\varepsilon _{\mu \nu \lambda \sigma }a^{\mu }b^{\nu }c^{\lambda }d^{\sigma }\\\operatorname {tr} ({\gamma ^{\mu }}{a\!\!\!/}{\gamma ^{\nu }})&=0\\\operatorname {tr} ({\gamma ^{5}}{a\!\!\!/}{b\!\!\!/})&=0\\\operatorname {tr} ({\gamma ^{0}}({a\!\!\!/}+m){\gamma ^{0}}({b\!\!\!/}+m))&=8a^{0}b^{0}-4(a\cdot b)+4m^{2}\\\operatorname {tr} (({a\!\!\!/}+m){\gamma ^{\mu }}({b\!\!\!/}+m){\gamma ^{\nu }})&=4\left[a^{\mu }b^{\nu }+a^{\nu }b^{\mu }-\eta ^{\mu \nu }((a\cdot b)-m^{2})\right]\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n})&=\operatorname {tr} ({a\!\!\!/}_{2n}...{a\!\!\!/}_{1})\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n+1})&=0\end{aligned}}}

where:

  • ε μ ν λ σ {\displaystyle \varepsilon _{\mu \nu \lambda \sigma }} is the Levi-Civita symbol
  • η μ ν {\displaystyle \eta ^{\mu \nu }} is the Minkowski metric
  • m {\displaystyle m} is a scalar.

With four-momentum

This section uses the (+ − − −) metric signature. Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum: using the Dirac basis for the gamma matrices,

γ 0 = ( I 0 0 − I ) , γ i = ( 0 σ i − σ i 0 ) {\displaystyle \gamma ^{0}={\begin{pmatrix}I&0\\0&-I\end{pmatrix}},\quad \gamma ^{i}={\begin{pmatrix}0&\sigma ^{i}\\-\sigma ^{i}&0\end{pmatrix}}\,}

as well as the definition of contravariant four-momentum in natural units,

p μ = ( E , p x , p y , p z ) {\displaystyle p^{\mu }=\left(E,p_{x},p_{y},p_{z}\right)\,}

we see explicitly that

p / = γ μ p μ = γ 0 p 0 − γ i p i = [ p 0 0 0 − p 0 ] − [ 0 σ i p i − σ i p i 0 ] = [ E − σ → ⋅ p → σ → ⋅ p → − E ] . {\displaystyle {\begin{aligned}{p\!\!/}&=\gamma ^{\mu }p_{\mu }=\gamma ^{0}p^{0}-\gamma ^{i}p^{i}\\&={\begin{bmatrix}p^{0}&0\\0&-p^{0}\end{bmatrix}}-{\begin{bmatrix}0&\sigma ^{i}p^{i}\\-\sigma ^{i}p^{i}&0\end{bmatrix}}\\&={\begin{bmatrix}E&-{\vec {\sigma }}\cdot {\vec {p}}\\{\vec {\sigma }}\cdot {\vec {p}}&-E\end{bmatrix}}.\end{aligned}}}

Similar results hold in other bases, such as the Weyl basis.

See also

References

  1. Weinberg, Steven (1995), The Quantum Theory of Fields, vol. 1, Cambridge University Press, p. 358 (380 in polish edition), ISBN 0-521-55001-7 0-521-55001-7