Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Fibrifold
Fiber space whose fibers and base spaces are orbifolds

In mathematics, a fibrifold is (roughly) a fiber space whose fibers and base spaces are orbifolds. They were introduced by John Horton Conway, Olaf Delgado Friedrichs, and Daniel H. Huson et al. (2001), who introduced a system of notation for 3-dimensional fibrifolds and used this to assign names to the 219 affine space group types. 184 of these are considered reducible, and 35 irreducible.

We don't have any images related to Fibrifold yet.
We don't have any YouTube videos related to Fibrifold yet.
We don't have any PDF documents related to Fibrifold yet.
We don't have any Books related to Fibrifold yet.
We don't have any archived web articles related to Fibrifold yet.

Irreducible cubic space groups

The 35 irreducible space groups correspond to the cubic space group.

35 irreducible space groups
8o:24−:24o:24+:22−:22o:22+:21o:2
8o4−4o4+2−2o2+1o
8o/44−/44o/44+/42−/42o/42+/41o/4
8−o8oo8+o4− −4−o4oo4+o4++2−o2oo2+o
36 cubic groups
ClassPoint groupHexoctahedral*432 (m3m)Hextetrahedral*332 (43m)Gyroidal432 (432)Diploidal3*2 (m3)Tetartoidal332 (23)
bc lattice (I)8o:2 (Im3m)4o:2 (I43m)8+o (I432)8−o (I3)4oo (I23)
nc lattice (P)4−:2 (Pm3m)2o:2 (P43m)4−o (P432)4− (Pm3)2o (P23)
4+:2 (Pn3m)4+ (P4232)4+o (Pn3)
fc lattice (F)2−:2 (Fm3m)1o:2 (F43m)2−o (F432)2− (Fm3)1o (F23)
2+:2 (Fd3m)2+ (F4132)2+o (Fd3)
Otherlatticegroups8o (Pm3n)8oo (Pn3n)4− − (Fm3c)4++ (Fd3c)4o (P43n)2oo (F43c)
Achiralquartergroups8o/4 (Ia3d)4o/4 (I43d)4+/4 (I4132)2+/4 (P4332,P4132)2−/4 (Pa3)4−/4 (Ia3)1o/4 (P213)2o/4 (I213)
8 primary hexoctahedral hextetrahedral lattices of the cubic space groupsThe fibrifold cubic subgroup structure shown is based on extending symmetry of the tetragonal disphenoid fundamental domain of space group 216, similar to the square

Irreducible group symbols (indexed 195−230) in Hermann–Mauguin notation, Fibrifold notation, geometric notation, and Coxeter notation:

Class(Orbifold point group)Space groups
Tetartoidal23(332)195196197198199 
P23F23I23P213I213 
2o1o4oo1o/42o/4 
P3.3.2F3.3.2I3.3.2P3.3.21I3.3.21 
[(4,3+,4,2+)][3[4]]+[[(4,3+,4,2+)]] 
Diploidal43m(3*2)200201202203204205206 
Pm3Pn3Fm3Fd3I3Pa3Ia3 
4−4+o2−2+o8−o2−/44−/4 
P43Pn43F43Fd43I43Pb43Ib43 
[4,3+,4][[4,3+,4]+][4,(31,1)+][[3[4]]]+[[4,3+,4]] 
Gyroidal432(432)207208209210211212213214 
P432P4232F432F4132I432P4332P4132I4132 
4−o4+2−o2+8+o2+/44+/4 
P4.3.2P42.3.2F4.3.2F41.3.2I4.3.2P43.3.2P41.3.2I41.3.2 
[4,3,4]+[[4,3,4]+]+[4,31,1]+[[3[4]]]+[[4,3,4]]+ 
Hextetrahedral43m(*332)215216217218219220 
P43mF43mI43mP43nF43cI43d 
2o:21o:24o:24o2oo4o/4 
P33F33I33Pn3n3nFc3c3aId3d3d 
[(4,3,4,2+)][3[4]][[(4,3,4,2+)]][[(4,3,4,2+)]+][+(4,{3),4}+] 
Hexoctahedralm3m(*432)221222223224225226227228229230
Pm3mPn3nPm3nPn3mFm3mFm3cFd3mFd3cIm3mIa3d
4−:28oo8o4+:22−:24−−2+:24++8o:28o/4
P43Pn4n3nP4n3nPn43F43F4c3aFd4n3Fd4c3aI43Ib4d3d
[4,3,4][[4,3,4]+][(4+,2+)[3[4]]][4,31,1][4,(3,4)+][[3[4]]][[+(4,{3),4}+]][[4,3,4]]