Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Fuchs relation
Mathematical concept

In mathematics, the Fuchs relation is a relation between the starting exponents of formal series solutions of certain linear differential equations, so called Fuchsian equations. It is named after Lazarus Immanuel Fuchs.

We don't have any images related to Fuchs relation yet.
We don't have any YouTube videos related to Fuchs relation yet.
We don't have any PDF documents related to Fuchs relation yet.
We don't have any Books related to Fuchs relation yet.
We don't have any archived web articles related to Fuchs relation yet.

Definition Fuchsian equation

A linear differential equation in which every singular point, including the point at infinity, is a regular singularity is called Fuchsian equation or equation of Fuchsian type.1 For Fuchsian equations a formal fundamental system exists at any point, due to the Fuchsian theory.

Coefficients of a Fuchsian equation

Let a 1 , … , a r ∈ C {\displaystyle a_{1},\dots ,a_{r}\in \mathbb {C} } be the r {\displaystyle r} regular singularities in the finite part of the complex plane of the linear differential equation L f := d n f d z n + q 1 d n − 1 f d z n − 1 + ⋯ + q n − 1 d f d z + q n f {\displaystyle Lf:={\frac {d^{n}f}{dz^{n}}}+q_{1}{\frac {d^{n-1}f}{dz^{n-1}}}+\cdots +q_{n-1}{\frac {df}{dz}}+q_{n}f}

with meromorphic functions q i {\displaystyle q_{i}} . For linear differential equations the singularities are exactly the singular points of the coefficients. L f = 0 {\displaystyle Lf=0} is a Fuchsian equation if and only if the coefficients are rational functions of the form

q i ( z ) = Q i ( z ) ψ i {\displaystyle q_{i}(z)={\frac {Q_{i}(z)}{\psi ^{i}}}}

with the polynomial ψ := ∏ j = 0 r ( z − a j ) ∈ C [ z ] {\textstyle \psi :=\prod _{j=0}^{r}(z-a_{j})\in \mathbb {C} [z]} and certain polynomials Q i ∈ C [ z ] {\displaystyle Q_{i}\in \mathbb {C} [z]} for i ∈ { 1 , … , n } {\displaystyle i\in \{1,\dots ,n\}} , such that deg ⁡ ( Q i ) ≤ i ( r − 1 ) {\displaystyle \deg(Q_{i})\leq i(r-1)} .2 This means the coefficient q i {\displaystyle q_{i}} has poles of order at most i {\displaystyle i} , for i ∈ { 1 , … , n } {\displaystyle i\in \{1,\dots ,n\}} .

Fuchs relation

Let L f = 0 {\displaystyle Lf=0} be a Fuchsian equation of order n {\displaystyle n} with the singularities a 1 , … , a r ∈ C {\displaystyle a_{1},\dots ,a_{r}\in \mathbb {C} } and the point at infinity. Let α i 1 , … , α i n ∈ C {\displaystyle \alpha _{i1},\dots ,\alpha _{in}\in \mathbb {C} } be the roots of the indicial polynomial relative to a i {\displaystyle a_{i}} , for i ∈ { 1 , … , r } {\displaystyle i\in \{1,\dots ,r\}} . Let β 1 , … , β n ∈ C {\displaystyle \beta _{1},\dots ,\beta _{n}\in \mathbb {C} } be the roots of the indicial polynomial relative to ∞ {\displaystyle \infty } , which is given by the indicial polynomial of L f {\displaystyle Lf} transformed by z = x − 1 {\displaystyle z=x^{-1}} at x = 0 {\displaystyle x=0} . Then the so called Fuchs relation holds:

∑ i = 1 r ∑ k = 1 n α i k + ∑ k = 1 n β k = n ( n − 1 ) ( r − 1 ) 2 {\displaystyle \sum _{i=1}^{r}\sum _{k=1}^{n}\alpha _{ik}+\sum _{k=1}^{n}\beta _{k}={\frac {n(n-1)(r-1)}{2}}} .3

The Fuchs relation can be rewritten as infinite sum. Let P ξ {\displaystyle P_{\xi }} denote the indicial polynomial relative to ξ ∈ C ∪ { ∞ } {\displaystyle \xi \in \mathbb {C} \cup \{\infty \}} of the Fuchsian equation L f = 0 {\displaystyle Lf=0} . Define defect : C ∪ { ∞ } → C {\displaystyle \operatorname {defect} :\mathbb {C} \cup \{\infty \}\to \mathbb {C} } as

defect ⁡ ( ξ ) := { Tr ⁡ ( P ξ ) − n ( n − 1 ) 2 , for  ξ ∈ C Tr ⁡ ( P ξ ) + n ( n − 1 ) 2 , for  ξ = ∞ {\displaystyle \operatorname {defect} (\xi ):={\begin{cases}\operatorname {Tr} (P_{\xi })-{\frac {n(n-1)}{2}}{\text{, for }}\xi \in \mathbb {C} \\\operatorname {Tr} (P_{\xi })+{\frac {n(n-1)}{2}}{\text{, for }}\xi =\infty \end{cases}}}

where Tr ⁡ ( P ) := ∑ { z ∈ C : P ( z ) = 0 } z {\textstyle \operatorname {Tr} (P):=\sum _{\{z\in \mathbb {C} :P(z)=0\}}z} gives the trace of a polynomial P {\displaystyle P} , i. e., Tr {\displaystyle \operatorname {Tr} } denotes the sum of a polynomial's roots counted with multiplicity.

This means that defect ⁡ ( ξ ) = 0 {\displaystyle \operatorname {defect} (\xi )=0} for any ordinary point ξ {\displaystyle \xi } , due to the fact that the indicial polynomial relative to any ordinary point is P ξ ( α ) = α ( α − 1 ) ⋯ ( α − n + 1 ) {\displaystyle P_{\xi }(\alpha )=\alpha (\alpha -1)\cdots (\alpha -n+1)} . The transformation z = x − 1 {\displaystyle z=x^{-1}} , that is used to obtain the indicial equation relative to ∞ {\displaystyle \infty } , motivates the changed sign in the definition of defect {\displaystyle \operatorname {defect} } for ξ = ∞ {\displaystyle \xi =\infty } . The rewritten Fuchs relation is:

∑ ξ ∈ C ∪ { ∞ } defect ⁡ ( ξ ) = 0. {\displaystyle \sum _{\xi \in \mathbb {C} \cup \{\infty \}}\operatorname {defect} (\xi )=0.} 4
  • Ince, Edward Lindsay (1956). Ordinary Differential Equations. New York, USA: Dover Publications. ISBN 9780486158211. {{cite book}}: ISBN / Date incompatibility (help)
  • Tenenbaum, Morris; Pollard, Harry (1963). Ordinary Differential Equations. New York, USA: Dover Publications. pp. Lecture 40. ISBN 9780486649405. {{cite book}}: ISBN / Date incompatibility (help)
  • Horn, Jakob (1905). Gewöhnliche Differentialgleichungen beliebiger Ordnung. Leipzig, Germany: G. J. Göschensche Verlagshandlung.
  • Schlesinger, Ludwig (1897). Handbuch der Theorie der linearen Differentialgleichungen (2. Band, 1. Teil). Leipzig, Germany: B. G.Teubner. pp. 241 ff.

References

  1. Ince, Edward Lindsay (1956). Ordinary Differential Equations. New York, USA: Dover Publications. p. 370. ISBN 9780486158211. {{cite book}}: ISBN / Date incompatibility (help) 9780486158211

  2. Horn, Jakob (1905). Gewöhnliche Differentialgleichungen beliebiger Ordnung. Leipzig, Germany: G. J. Göschensche Verlagshandlung. p. 169.

  3. Ince, Edward Lindsay (1956). Ordinary Differential Equations. New York, USA: Dover Publications. p. 371. ISBN 9780486158211. {{cite book}}: ISBN / Date incompatibility (help) 9780486158211

  4. Landl, Elisabeth (2018). The Fuchs Relation (Bachelor Thesis). Linz, Austria. chapter 3.