Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Fuglede's conjecture
Mathematical problem

Fuglede's conjecture is an open problem in mathematics proposed by Bent Fuglede in 1974. It states that every domain of R d {\displaystyle \mathbb {R} ^{d}} (i.e. subset of R d {\displaystyle \mathbb {R} ^{d}} with positive finite Lebesgue measure) is a spectral set if and only if it tiles R d {\displaystyle \mathbb {R} ^{d}} by translation.

We don't have any images related to Fuglede's conjecture yet.
We don't have any YouTube videos related to Fuglede's conjecture yet.
We don't have any PDF documents related to Fuglede's conjecture yet.
We don't have any Books related to Fuglede's conjecture yet.
We don't have any archived web articles related to Fuglede's conjecture yet.

Spectral sets and translational tiles

Spectral sets in R d {\displaystyle \mathbb {R} ^{d}}

A set Ω {\displaystyle \Omega } ⊂ {\displaystyle \subset } R d {\displaystyle \mathbb {R} ^{d}} with positive finite Lebesgue measure is said to be a spectral set if there exists a Λ {\displaystyle \Lambda } ⊂ {\displaystyle \subset } R d {\displaystyle \mathbb {R} ^{d}} such that { e 2 π i ⟨ λ , ⋅ ⟩ } λ ∈ Λ {\displaystyle \left\{e^{2\pi i\left\langle \lambda ,\cdot \right\rangle }\right\}_{\lambda \in \Lambda }} is an orthogonal basis of L 2 ( Ω ) {\displaystyle L^{2}(\Omega )} . The set Λ {\displaystyle \Lambda } is then said to be a spectrum of Ω {\displaystyle \Omega } and ( Ω , Λ ) {\displaystyle (\Omega ,\Lambda )} is called a spectral pair.

Translational tiles of R d {\displaystyle \mathbb {R} ^{d}}

A set Ω ⊂ R d {\displaystyle \Omega \subset \mathbb {R} ^{d}} is said to tile R d {\displaystyle \mathbb {R} ^{d}} by translation (i.e. Ω {\displaystyle \Omega } is a translational tile) if there exist a discrete set T {\displaystyle \mathrm {T} } such that ⋃ t ∈ T ( Ω + t ) = R d {\displaystyle \bigcup _{t\in \mathrm {T} }(\Omega +t)=\mathbb {R} ^{d}} and the Lebesgue measure of ( Ω + t ) ∩ ( Ω + t ′ ) {\displaystyle (\Omega +t)\cap (\Omega +t')} is zero for all t ≠ t ′ {\displaystyle t\neq t'} in T {\displaystyle \mathrm {T} } .2

Partial results

  • Fuglede proved in 1974 that the conjecture holds if Ω {\displaystyle \Omega } is a fundamental domain of a lattice.
  • In 2003, Alex Iosevich, Nets Katz and Terence Tao proved that the conjecture holds if Ω {\displaystyle \Omega } is a convex planar domain.3
  • In 2004, Terence Tao showed that the conjecture is false on R d {\displaystyle \mathbb {R} ^{d}} for d ≥ 5 {\displaystyle d\geq 5} .4 It was later shown by Bálint Farkas, Mihail N. Kolounzakis, Máté Matolcsi and Péter Móra that the conjecture is also false for d = 3 {\displaystyle d=3} and 4 {\displaystyle 4} .5678 However, the conjecture remains unknown for d = 1 , 2 {\displaystyle d=1,2} .
  • In 2015, Alex Iosevich, Azita Mayeli and Jonathan Pakianathan showed that an extension of the conjecture holds in Z p × Z p {\displaystyle \mathbb {Z} _{p}\times \mathbb {Z} _{p}} , where Z p {\displaystyle \mathbb {Z} _{p}} is the cyclic group of order p.9
  • In 2017, Rachel Greenfeld and Nir Lev proved the conjecture for convex polytopes in R 3 {\displaystyle \mathbb {R} ^{3}} .10
  • In 2019, Nir Lev and Máté Matolcsi settled the conjecture for convex domains affirmatively in all dimensions.11

References

  1. Fuglede, Bent (1974). "Commuting self-adjoint partial differential operators and a group theoretic problem". Journal of Functional Analalysis. 16: 101–121. doi:10.1016/0022-1236(74)90072-X. /wiki/Doi_(identifier)

  2. Dutkay, Dorin Ervin; Lai, Chun–Kit (2014). "Some reductions of the spectral set conjecture to integers". Mathematical Proceedings of the Cambridge Philosophical Society. 156 (1): 123–135. arXiv:1301.0814. Bibcode:2014MPCPS.156..123D. doi:10.1017/S0305004113000558. S2CID 119153862. /wiki/Mathematical_Proceedings_of_the_Cambridge_Philosophical_Society

  3. Iosevich, Alex; Katz, Nets; Terence, Tao (2003). "The Fuglede spectral conjecture hold for convex planar domains". Mathematical Research Letters. 10 (5–6): 556–569. doi:10.4310/MRL.2003.v10.n5.a1. https://doi.org/10.4310%2FMRL.2003.v10.n5.a1

  4. Tao, Terence (2004). "Fuglede's conjecture is false on 5 or higher dimensions". Mathematical Research Letters. 11 (2–3): 251–258. arXiv:math/0306134. doi:10.4310/MRL.2004.v11.n2.a8. S2CID 8267263. /wiki/ArXiv_(identifier)

  5. Farkas, Bálint; Matolcsi, Máté; Móra, Péter (2006). "On Fuglede's conjecture and the existence of universal spectra". Journal of Fourier Analysis and Applications. 12 (5): 483–494. arXiv:math/0612016. Bibcode:2006math.....12016F. doi:10.1007/s00041-005-5069-7. S2CID 15553212. /wiki/ArXiv_(identifier)

  6. Kolounzakis, Mihail N.; Matolcsi, Máté (2006). "Tiles with no spectra". Forum Mathematicum. 18 (3): 519–528. arXiv:math/0406127. Bibcode:2004math......6127K. /wiki/ArXiv_(identifier)

  7. Matolcsi, Máté (2005). "Fuglede's conjecture fails in dimension 4". Proceedings of the American Mathematical Society. 133 (10): 3021–3026. doi:10.1090/S0002-9939-05-07874-3. https://doi.org/10.1090%2FS0002-9939-05-07874-3

  8. Kolounzakis, Mihail N.; Matolcsi, Máté (2006). "Complex Hadamard Matrices and the spectral set conjecture". Collectanea Mathematica. Extra: 281–291. arXiv:math/0411512. Bibcode:2004math.....11512K. /wiki/ArXiv_(identifier)

  9. Iosevich, Alex; Mayeli, Azita; Pakianathan, Jonathan (2017). "The Fuglede Conjecture holds in Zp×Zp". Analysis & PDE. 10 (4): 757–764. arXiv:1505.00883. doi:10.2140/apde.2017.10.757. /wiki/ArXiv_(identifier)

  10. Greenfeld, Rachel; Lev, Nir (2017). "Fuglede's spectral set conjecture for convex polytopes". Analysis & PDE. 10 (6): 1497–1538. arXiv:1602.08854. doi:10.2140/apde.2017.10.1497. S2CID 55748258. /wiki/ArXiv_(identifier)

  11. Lev, Nir; Matolcsi, Máté (2022). "The Fuglede conjecture for convex domains is true in all dimensions". Acta Mathematica. 228 (2): 385–420. arXiv:1904.12262. doi:10.4310/ACTA.2022.v228.n2.a3. S2CID 139105387. /wiki/ArXiv_(identifier)