Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Functional square root
Function that, applied twice, gives another function

In mathematics, a functional square root (sometimes called a half iterate) is a square root of a function with respect to the operation of function composition. In other words, a functional square root of a function g is a function f satisfying f(f(x)) = g(x) for all x.

We don't have any images related to Functional square root yet.
We don't have any YouTube videos related to Functional square root yet.
We don't have any PDF documents related to Functional square root yet.
We don't have any Books related to Functional square root yet.
We don't have any archived web articles related to Functional square root yet.

Notation

Notations expressing that f is a functional square root of g are f = g[1/2] and f = g1/2[dubious – discuss], or rather f = g 1/2 (see Iterated Function), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².

History

Solutions

A systematic procedure to produce arbitrary functional n-roots (including arbitrary real, negative, and infinitesimal n) of functions g : C → C {\displaystyle g:\mathbb {C} \rightarrow \mathbb {C} } relies on the solutions of Schröder's equation.345 Infinitely many trivial solutions exist when the domain of a root function f is allowed to be sufficiently larger than that of g.

Examples

  • f(x) = 2x2 is a functional square root of g(x) = 8x4.
  • A functional square root of the nth Chebyshev polynomial, g ( x ) = T n ( x ) {\displaystyle g(x)=T_{n}(x)} , is f ( x ) = cos ⁡ ( n arccos ⁡ ( x ) ) {\displaystyle f(x)=\cos {({\sqrt {n}}\arccos(x))}} , which in general is not a polynomial.
  • f ( x ) = x / ( 2 + x ( 1 − 2 ) ) {\displaystyle f(x)=x/({\sqrt {2}}+x(1-{\sqrt {2}}))} is a functional square root of g ( x ) = x / ( 2 − x ) {\displaystyle g(x)=x/(2-x)} .
sin[2](x) = sin(sin(x)) [red curve] sin[1](x) = sin(x) = rin(rin(x)) [blue curve] sin[⁠1/2⁠](x) = rin(x) = qin(qin(x)) [orange curve], although this is not unique, the opposite - rin being a solution of sin = rin ∘ rin, too. sin[⁠1/4⁠](x) = qin(x) [black curve above the orange curve] sin[–1](x) = arcsin(x) [dashed curve]

Using this extension, sin[⁠1/2⁠](1) can be shown to be approximately equal to 0.90871.6

(See.7 For the notation, see [1] Archived 2022-12-05 at the Wayback Machine.)

See also

References

  1. Kneser, H. (1950). "Reelle analytische Lösungen der Gleichung φ(φ(x)) = ex und verwandter Funktionalgleichungen". Journal für die reine und angewandte Mathematik. 187: 56–67. doi:10.1515/crll.1950.187.56. S2CID 118114436. /wiki/Hellmuth_Kneser

  2. Jeremy Gray and Karen Parshall (2007) Episodes in the History of Modern Algebra (1800–1950), American Mathematical Society, ISBN 978-0-8218-4343-7 /wiki/Jeremy_Gray

  3. Schröder, E. (1870). "Ueber iterirte Functionen". Mathematische Annalen. 3 (2): 296–322. doi:10.1007/BF01443992. S2CID 116998358. /wiki/Ernst_Schr%C3%B6der_(mathematician)

  4. Szekeres, G. (1958). "Regular iteration of real and complex functions". Acta Mathematica. 100 (3–4): 361–376. doi:10.1007/BF02559539. /wiki/George_Szekeres

  5. Curtright, T.; Zachos, C.; Jin, X. (2011). "Approximate solutions of functional equations". Journal of Physics A. 44 (40): 405205. arXiv:1105.3664. Bibcode:2011JPhA...44N5205C. doi:10.1088/1751-8113/44/40/405205. S2CID 119142727. /wiki/Thomas_Curtright

  6. https://go.helms-net.de/math/tetdocs/ContinuousfunctionalIteration.pdf https://go.helms-net.de/math/tetdocs/ContinuousfunctionalIteration.pdf

  7. Curtright, T. L. Evolution surfaces and Schröder functional methods Archived 2014-10-30 at the Wayback Machine. http://www.physics.miami.edu/~curtright/Schroeder.html