Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Gaussian q-distribution
Family of probability distributions

In mathematical physics and probability and statistics, the Gaussian q-distribution is a family of probability distributions that includes, as limiting cases, the uniform distribution and the normal (Gaussian) distribution. It was introduced by Diaz and Teruel. It is a q-analog of the Gaussian or normal distribution.

The distribution is symmetric about zero and is bounded, except for the limiting case of the normal distribution. The limiting uniform distribution is on the range -1 to +1.

We don't have any images related to Gaussian q-distribution yet.
We don't have any YouTube videos related to Gaussian q-distribution yet.
We don't have any PDF documents related to Gaussian q-distribution yet.
We don't have any Books related to Gaussian q-distribution yet.
We don't have any archived web articles related to Gaussian q-distribution yet.

Definition

Let q be a real number in the interval [0, 1). The probability density function of the Gaussian q-distribution is given by

s q ( x ) = { 0 if  x < − ν 1 c ( q ) E q 2 − q 2 x 2 [ 2 ] q if  − ν ≤ x ≤ ν 0 if  x > ν . {\displaystyle s_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu \\{\frac {1}{c(q)}}E_{q^{2}}^{\frac {-q^{2}x^{2}}{[2]_{q}}}&{\text{if }}-\nu \leq x\leq \nu \\0&{\mbox{if }}x>\nu .\end{cases}}}

where

ν = ν ( q ) = 1 1 − q , {\displaystyle \nu =\nu (q)={\frac {1}{\sqrt {1-q}}},} c ( q ) = 2 ( 1 − q ) 1 / 2 ∑ m = 0 ∞ ( − 1 ) m q m ( m + 1 ) ( 1 − q 2 m + 1 ) ( 1 − q 2 ) q 2 m . {\displaystyle c(q)=2(1-q)^{1/2}\sum _{m=0}^{\infty }{\frac {(-1)^{m}q^{m(m+1)}}{(1-q^{2m+1})(1-q^{2})_{q^{2}}^{m}}}.}

The q-analogue [t]q of the real number t {\displaystyle t} is given by

[ t ] q = q t − 1 q − 1 . {\displaystyle [t]_{q}={\frac {q^{t}-1}{q-1}}.}

The q-analogue of the exponential function is the q-exponential, Exq, which is given by

E q x = ∑ j = 0 ∞ q j ( j − 1 ) / 2 x j [ j ] ! {\displaystyle E_{q}^{x}=\sum _{j=0}^{\infty }q^{j(j-1)/2}{\frac {x^{j}}{[j]!}}}

where the q-analogue of the factorial is the q-factorial, [n]q!, which is in turn given by

[ n ] q ! = [ n ] q [ n − 1 ] q ⋯ [ 2 ] q {\displaystyle [n]_{q}!=[n]_{q}[n-1]_{q}\cdots [2]_{q}\,}

for an integer n > 2 and [1]q! = [0]q! = 1.

The cumulative distribution function of the Gaussian q-distribution is given by

G q ( x ) = { 0 if  x < − ν 1 c ( q ) ∫ − ν x E q 2 − q 2 t 2 / [ 2 ] d q t if  − ν ≤ x ≤ ν 1 if  x > ν {\displaystyle G_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu \\[12pt]\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{x}E_{q^{2}}^{-q^{2}t^{2}/[2]}\,d_{q}t&{\text{if }}-\nu \leq x\leq \nu \\[12pt]1&{\text{if }}x>\nu \end{cases}}}

where the integration symbol denotes the Jackson integral.

The function Gq is given explicitly by

G q ( x ) = { 0 if  x < − ν , 1 2 + 1 − q c ( q ) ∑ n = 0 ∞ q n ( n + 1 ) ( q − 1 ) n ( 1 − q 2 n + 1 ) ( 1 − q 2 ) q 2 n x 2 n + 1 if  − ν ≤ x ≤ ν 1 if   x > ν {\displaystyle G_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu ,\\\displaystyle {\frac {1}{2}}+{\frac {1-q}{c(q)}}\sum _{n=0}^{\infty }{\frac {q^{n(n+1)}(q-1)^{n}}{(1-q^{2n+1})(1-q^{2})_{q^{2}}^{n}}}x^{2n+1}&{\text{if }}-\nu \leq x\leq \nu \\1&{\text{if}}\ x>\nu \end{cases}}}

where

( a + b ) q n = ∏ i = 0 n − 1 ( a + q i b ) . {\displaystyle (a+b)_{q}^{n}=\prod _{i=0}^{n-1}(a+q^{i}b).}

Moments

The moments of the Gaussian q-distribution are given by

1 c ( q ) ∫ − ν ν E q 2 − q 2 x 2 / [ 2 ] x 2 n d q x = [ 2 n − 1 ] ! ! , {\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{\nu }E_{q^{2}}^{-q^{2}x^{2}/[2]}\,x^{2n}\,d_{q}x=[2n-1]!!,} 1 c ( q ) ∫ − ν ν E q 2 − q 2 x 2 / [ 2 ] x 2 n + 1 d q x = 0 , {\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{\nu }E_{q^{2}}^{-q^{2}x^{2}/[2]}\,x^{2n+1}\,d_{q}x=0,}

where the symbol [2n − 1]!! is the q-analogue of the double factorial given by

[ 2 n − 1 ] [ 2 n − 3 ] ⋯ [ 1 ] = [ 2 n − 1 ] ! ! . {\displaystyle [2n-1][2n-3]\cdots [1]=[2n-1]!!.\,}

See also