Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Generalized Maxwell model

The generalized Maxwell model also known as the Maxwell–Wiechert model (after James Clerk Maxwell and E Wiechert) is the most general form of the linear model for viscoelasticity. In this model, several Maxwell elements are assembled in parallel. It takes into account that the relaxation does not occur at a single time, but in a set of times. Due to the presence of molecular segments of different lengths, with shorter ones contributing less than longer ones, there is a varying time distribution. The Wiechert model shows this by having as many spring–dashpot Maxwell elements as are necessary to accurately represent the distribution. The figure on the right shows the generalised Wiechert model.

Related Image Collections Add Image
We don't have any YouTube videos related to Generalized Maxwell model yet.
We don't have any PDF documents related to Generalized Maxwell model yet.
We don't have any Books related to Generalized Maxwell model yet.
We don't have any archived web articles related to Generalized Maxwell model yet.

General model form

Solids

Given N + 1 {\displaystyle N+1} elements with moduli E i {\displaystyle E_{i}} , viscosities η i {\displaystyle \eta _{i}} , and relaxation times τ i = η i E i {\displaystyle \tau _{i}={\frac {\eta _{i}}{E_{i}}}}

The general form for the model for solids is given by :

General Maxwell Solid Model (1)

σ + {\displaystyle \sigma +} ∑ n = 1 N ( ∑ i 1 = 1 N − n + 1 . . . ( ∑ i a = i a − 1 + 1 N − ( n − a ) + 1 . . . ( ∑ i n = i n − 1 + 1 N ( ∏ j ∈ { i 1 , . . . , i n } τ j ) ) . . . ) . . . ) ∂ n σ ∂ t n {\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}}

= {\displaystyle =}

E 0 ϵ + {\displaystyle E_{0}\epsilon +} ∑ n = 1 N ( ∑ i 1 = 1 N − n + 1 . . . ( ∑ i a = i a − 1 + 1 N − ( n − a ) + 1 . . . ( ∑ i n = i n − 1 + 1 N ( ( E 0 + ∑ j ∈ { i 1 , . . . , i n } E j ) ( ∏ k ∈ { i 1 , . . . , i n } τ k ) ) ) . . . ) . . . ) ∂ n ϵ ∂ t n {\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({E_{0}+\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}}

Example: standard linear solid model

Following the above model with N + 1 = 2 {\displaystyle N+1=2} elements yields the standard linear solid model:

Standard Linear Solid Model (3)

σ + τ 1 ∂ σ ∂ t = E 0 ϵ + τ 1 ( E 0 + E 1 ) ∂ ϵ ∂ t {\displaystyle \sigma +\tau _{1}{\frac {\partial {\sigma }}{\partial {t}}}=E_{0}\epsilon +\tau _{1}\left({E_{0}+E_{1}}\right){\frac {\partial {\epsilon }}{\partial {t}}}}

Fluids

Given N + 1 {\displaystyle N+1} elements with moduli E i {\displaystyle E_{i}} , viscosities η i {\displaystyle \eta _{i}} , and relaxation times τ i = η i E i {\displaystyle \tau _{i}={\frac {\eta _{i}}{E_{i}}}}

The general form for the model for fluids is given by:

General Maxwell Fluid Model (4)

σ + {\displaystyle \sigma +} ∑ n = 1 N ( ∑ i 1 = 1 N − n + 1 . . . ( ∑ i a = i a − 1 + 1 N − ( n − a ) + 1 . . . ( ∑ i n = i n − 1 + 1 N ( ∏ j ∈ { i 1 , . . . , i n } τ j ) ) . . . ) . . . ) ∂ n σ ∂ t n {\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}}

= {\displaystyle =}

∑ n = 1 N ( η 0 + ∑ i 1 = 1 N − n + 1 . . . ( ∑ i a = i a − 1 + 1 N − ( n − a ) + 1 . . . ( ∑ i n = i n − 1 + 1 N ( ( ∑ j ∈ { i 1 , . . . , i n } E j ) ( ∏ k ∈ { i 1 , . . . , i n } τ k ) ) ) . . . ) . . . ) ∂ n ϵ ∂ t n {\displaystyle \sum _{n=1}^{N}{\left({\eta _{0}+\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}}

Example: three parameter fluid

The analogous model to the standard linear solid model is the three parameter fluid, also known as the Jeffreys model:5

Three Parameter Maxwell Fluid Model (6)

σ + τ 1 ∂ σ ∂ t = ( η 0 + τ 1 E 1 ∂ ∂ t ) ∂ ϵ ∂ t {\displaystyle \sigma +\tau _{1}{\frac {\partial {\sigma }}{\partial {t}}}=\left({\eta _{0}+\tau _{1}E_{1}{\frac {\partial }{\partial t}}}\right){\frac {\partial {\epsilon }}{\partial {t}}}}

References

  1. Wiechert, E (1889); "Ueber elastische Nachwirkung", Dissertation, Königsberg University, Germany

  2. Wiechert, E (1893); "Gesetze der elastischen Nachwirkung für constante Temperatur", Annalen der Physik, Vol. 286, issue 10, p. 335–348 and issue 11, p. 546–570 https://doi.org/10.1002/andp.18932861011

  3. Roylance, David (2001); "Engineering Viscoelasticity", 14-15

  4. Tschoegl, Nicholas W. (1989); "The Phenomenological Theory of Linear Viscoelastic Behavior", 119-126

  5. Gutierrez-Lemini, Danton (2013). Engineering Viscoelasticity. Springer. p. 88. ISBN 9781461481393. 9781461481393