Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Genetically encoded voltage indicator
Protein

Genetically encoded voltage indicator (or GEVI) is a protein that can sense membrane potential in a cell and relate the change in voltage to a form of output, often fluorescent level. It is a promising optogenetic recording tool that enables recording of electrophysiological signals from cultured cells and live animals. Examples of GEVI families include Quasar/Archon, Ace-mNeon,, and ASAP.

We don't have any images related to Genetically encoded voltage indicator yet.
We don't have any YouTube videos related to Genetically encoded voltage indicator yet.
We don't have any PDF documents related to Genetically encoded voltage indicator yet.
We don't have any Books related to Genetically encoded voltage indicator yet.
We don't have any archived web articles related to Genetically encoded voltage indicator yet.

History

Even though the idea of optical measurement of neuronal activity was proposed in the late 1960s,7 the first successful GEVI that was convenient enough to put into actual use was not developed until technologies of genetic engineering had become mature in the late 1990s. The first GEVI, coined FlaSh,8 was constructed by fusing a modified green fluorescent protein with a voltage-sensitive K+ channel (Shaker). Unlike fluorescent proteins, the discovery of new GEVIs are seldom inspired by nature, for it is hard to find an organism which naturally has the ability to change its fluorescence based on voltage. Therefore, new GEVIs are mostly the products of genetic and protein engineering.

Two methods can be utilized to find novel GEVIs: rational design and directed evolution. The former method contributes to the most of new GEVI variants, but recent research using directed evolution have shown promising results in GEVI optimization.910

Structure

Conceptually, a GEVI should sense the voltage difference across the cell membrane and report it by a change in fluorescence. Many different structures can be used for the voltage sensing function,11 but one essential feature is that it must be imbedded in the cell membrane. Usually, the voltage-sensing domain (VSD) of a GEVI spans across the membrane, and is connected to the fluorescent protein (FP). However, it is not necessary that sensing and reporting must happen in different structures - see, for example, the Archons.

By structure, GEVIs can be classified into four categories based on the current findings: (1) GEVIs contain a fluorescent protein FRET pair, e.g. VSFP1, (2) Single opsin GEVIs, e.g. Arch, (3) Opsin-FP FRET pair GEVIs, e.g. MacQ-mCitrine, (4) single FP with special types of voltage sensing domains, e.g. ASAP1. A majority of GEVIs are based on the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP or Ci-VSD (domain)), which was discovered in 2005 from the genomic survey of the organism.12 Some GEVIs may have similar components, but in different positions. For example, ASAP1 and ArcLight both use a VSD and one FP, but the FP of ASAP1 is on the outside of the cell whereas that of ArcLight is on the inside, and the two FPs of VSFP-Butterfly are separated by the VSD, while the two FPs of Mermaid are relatively close to each other.

Table of GEVIs and their structure
GEVI[A]YearSensingReportingPrecursor
FlaSh131997Shaker (K+ channel)GFP-
VSFP1142001Rat Kv2.1 (K+ channel)FRET pair: CFP and YFP-
SPARC152002Rat Na+ channelGFP-
VSFP2's162007Ci-VSDFRET pair: CFP (Cerulean) and YFP (Citrine)VSFP1
Flare172007Kv1.4 (K+ channel)YFPFlaSh
VSFP3.1182008Ci-VSDCFPVSFP2's
Mermaid192008Ci-VSDFRET pair: Marine GFP (mUKG) and OFP (mKOκ)VSFP2's
hVOS202008DipicrylamineGFP-
Red-shifted VSFP's212009Ci-VSDRFP/YFP (Citrine, mOrange2, TagRFP, or mKate2)VSFP3.1
PROPS222011Modified green-absorbing proteorhodopsin (GPR)Same as left-
Zahra, Zahra 2232012Nv-VSD, Dr-VSDFRET pair: CFP (Cerulean) and YFP (Citrine)VSFP2's
ArcLight242012Ci-VSDModified super ecliptic pHluorin-
Arch252012Archaerhodopsin 3Same as left-
ElectricPk262012Ci-VSDCircularly permuted EGFPVSFP3.1
VSFP-Butterfly272012Ci-VSDFRET pair: YFP (mCitrine) and RFP (mKate2)VSFP2's
VSFP-CR282013Ci-VSDFRET pair: GFP (Clover) and RFP(mRuby2)VSFP2.3
Mermaid2292013Ci-VSDFRET pair: CFP (seCFP2) and YFPMermaid
Mac GEVIs302014Mac rhodopsin (FRET acceptor)FRET doner: mCitrine, or mOrange2-
QuasAr1, QuasAr2312014Modified Archaerhodopsin 3Same as leftArch
Archer322014Modified Archaerhodopsin 3Same as leftArch
ASAP1332014Modified Gg-VSDCircularly permuted GFP-
Ace GEVIs342015Modified Ace rhodopsinFRET doner: mNeonGreenMac GEVIs
ArcLightning352015Ci-VSDModified super ecliptic pHluorinArcLight
Pado362016Voltage-gated proton channelSuper ecliptic pHluorin-
ASAP2f372016Modified Gg-VSDCircularly permuted GFPASAP1
FlicR1382016Ci-VSDCircularly permuted RFP (mApple)VSFP3.1
Bongwoori392017Ci-VSDModified super ecliptic pHluorinArcLight
ASAP2s402017Modified Gg-VSDCircularly permuted GFPASAP1
ASAP-Y412017Modified Gg-VSDCircularly permuted GFPASAP1
(pa)QuasAr3(-s)422019Modified Archaerhodopsin 3Same as leftQuasAr2
Voltron(-ST)432019Modified Ace rhodopsin (Ace2)FRET doner: Janelia Fluor (chemical)-
ASAP3442019Modified Gg-VSDCircularly permuted GFPASAP2s
JEDI-2P452022Modified Gg-VSDCircularly permuted GFPASAP2s
ASAP42023Modified Gg-VSDCircularly permuted GFPASAP2s
ASAP52024Modified Gg-VSDCircularly permuted GFPASAP3
  1. ↑Names in italic denote GEVIs not named.

Characteristics

A GEVI can be evaluated by its many characteristics. These traits can be classified into two categories: performance and compatibility. The performance properties include brightness, photostability, sensitivity, kinetics (speed), linearity of response, etc., while the compatibility properties cover toxicity (phototoxicity), plasma membrane localization, adaptability of deep-tissue imaging, etc.46

Applications, advantages, and disadvantages

Different types of GEVIs are being developed in many biological or physiological research areas. Unlike earlier voltage detecting methods like electrode-based electrophysiological recordings or voltage sensitive dyes, GEVIs can be expressed stably, and can be targeted to particular cell types. GEVIs have subcellular spatial resolution47 and temporal resolution as low as 0.2 milliseconds, at least an order of magnitude faster than calcium imaging. This allows for spike detection fidelity comparable to electrode-based electrophysiology but without the invasiveness.48 Researchers have used them to probe neural communications of an intact brain (of Drosophila49 or mouse50), electrical spiking of bacteria (E. coli51), and human stem-cell derived cardiomyocyte.5253

Conversely, any form of voltage indication has inherent limitations.54 Imaging must be fast, or short voltage excursions will be missed. This means fewer photons per image exposure. Next, brightness per cell is inherently lower than calcium indicators, as about a 30-fold fewer voltage indicators can fit in the membrane compared to cytosolic calcium indicators.

References

  1. "Genetically-Encoded Voltage Indicators". Openoptogenetics.org. Retrieved 8 May 2017. https://www.openoptogenetics.org/index.php?title=Genetically-Encoded_Voltage_Indicators

  2. https://pubmed.ncbi.nlm.nih.gov/36624211/ https://pubmed.ncbi.nlm.nih.gov/36624211/

  3. https://pubmed.ncbi.nlm.nih.gov/29483642/ https://pubmed.ncbi.nlm.nih.gov/29483642/

  4. https://pubmed.ncbi.nlm.nih.gov/36378956/ https://pubmed.ncbi.nlm.nih.gov/36378956/

  5. https://pmc.ncbi.nlm.nih.gov/articles/PMC10627146/ https://pmc.ncbi.nlm.nih.gov/articles/PMC10627146/

  6. https://pubmed.ncbi.nlm.nih.gov/39305894/ https://pubmed.ncbi.nlm.nih.gov/39305894/

  7. Cohen LB, Keynes RD, Hille B (1968). "Light scattering and birefringence changes during nerve activity". Nature. 218 (5140): 438–441. Bibcode:1968Natur.218..438C. doi:10.1038/218438a0. PMID 5649693. S2CID 4288546. /wiki/Nature_(journal)

  8. Siegel MS, Isacoff EY (1997). "A genetically encoded optical probe of membrane voltage". Neuron. 19 (4): 735–741. doi:10.1016/S0896-6273(00)80955-1. PMID 9354320. https://doi.org/10.1016%2FS0896-6273%2800%2980955-1

  9. Piatkevich, Kiryl D.; Jung, Erica E.; Straub, Christoph; Linghu, Changyang; Park, Demian; Suk, Ho-Jun; Hochbaum, Daniel R.; Goodwin, Daniel; Pnevmatikakis, Eftychios; Pak, Nikita; Kawashima, Takashi; Yang, Chao-Tsung; Rhoades, Jeffrey L.; Shemesh, Or; Asano, Shoh; Yoon, Young-Gyu; Freifeld, Limor; Saulnier, Jessica L.; Riegler, Clemens; Engert, Florian; Hughes, Thom; Drobizhev, Mikhail; Szabo, Balint; Ahrens, Misha B.; Flavell, Steven W.; Sabatini, Bernardo L.; Boyden, Edward S. (April 2018). "A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters". Nature Chemical Biology. 14 (4): 352–360. doi:10.1038/s41589-018-0004-9. ISSN 1552-4469. PMC 5866759. PMID 29483642. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866759

  10. Platisa J, Vasan G, Yang A, et al. (2017). "Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight". ACS Chem. Neurosci. 8 (3): 513–523. doi:10.1021/acschemneuro.6b00234. PMC 5355904. PMID 28045247. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355904

  11. Gong Y (2015). "The evolving capabilities of rhodopsin-based genetically encoded voltage indicators". Curr. Opin. Chem. Biol. 27: 84–89. doi:10.1016/j.cbpa.2015.05.006. PMC 4571180. PMID 26143170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571180

  12. Murata Y, Iwasaki H, Sasaki M, et al. (2005). "Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor". Nature. 435 (7046): 1239–1243. Bibcode:2005Natur.435.1239M. doi:10.1038/nature03650. PMID 15902207. S2CID 4427755. /wiki/Nature_(journal)

  13. Siegel MS, Isacoff EY (1997). "A genetically encoded optical probe of membrane voltage". Neuron. 19 (4): 735–741. doi:10.1016/S0896-6273(00)80955-1. PMID 9354320. https://doi.org/10.1016%2FS0896-6273%2800%2980955-1

  14. Sakai R, Repunte-Canonigo V, Raj CD, et al. (2001). "Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein". Eur. J. Neurosci. 13 (12): 2314–2318. doi:10.1046/j.0953-816x.2001.01617.x. PMID 11454036. S2CID 10969720. /wiki/The_European_Journal_of_Neuroscience

  15. Ataka K, Pieribone VA (2002). "A genetically targetable fluorescent probe of channel gating with rapid kinetics". Biophys. J. 82 (1 Pt 1): 509–516. Bibcode:2002BpJ....82..509A. doi:10.1016/S0006-3495(02)75415-5. PMC 1302490. PMID 11751337. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302490

  16. Dimitrov D, He Y, Mutoh H, et al. (2007). "Engineering and characterization of an enhanced fluorescent protein voltage sensor". PLoS One. 2 (5): e440. Bibcode:2007PLoSO...2..440D. doi:10.1371/journal.pone.0000440. PMC 1857823. PMID 17487283. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1857823

  17. Baker BJ, Lee H, Pieribone VA, et al. (2007). "Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells". J. Neurosci. Methods. 161 (1): 32–38. doi:10.1016/j.jneumeth.2006.10.005. PMID 17126911. S2CID 8540453. /wiki/Journal_of_Neuroscience_Methods

  18. Lundby A, Mutoh H, Dimitrov D, et al. (2008). "Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements". PLoS One. 3 (6): e2514. Bibcode:2008PLoSO...3.2514L. doi:10.1371/journal.pone.0002514. PMC 2429971. PMID 18575613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2429971

  19. Tsutsui H, Karasawa S, Okamura Y, et al. (2008). "Improving membrane voltage measurements using FRET with new fluorescent proteins". Nat. Methods. 5 (8): 683–685. doi:10.1038/nmeth.1235. PMID 18622396. S2CID 30661869. /wiki/Nature_Methods

  20. Sjulson L, Miesenböck G (2008). "Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter". J. Neurosci. 28 (21): 5582–5593. doi:10.1523/JNEUROSCI.0055-08.2008. PMC 2714581. PMID 18495892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714581

  21. Perron A, Mutoh H, Launey T, et al. (2009). "Red-shifted voltage-sensitive fluorescent proteins". Chem. Biol. 16 (12): 1268–1277. doi:10.1016/j.chembiol.2009.11.014. PMC 2818747. PMID 20064437. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818747

  22. Kralj JM, Hochbaum DR, Douglass AD, et al. (2011). "Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein". Science. 333 (6040): 345–348. Bibcode:2011Sci...333..345K. doi:10.1126/science.1204763. PMID 21764748. S2CID 2195943. /wiki/Science_(journal)

  23. Baker BJ, Jin L, Han Z, et al. (2012). "Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics". J. Neurosci. Methods. 208 (2): 190–196. doi:10.1016/j.jneumeth.2012.05.016. PMC 3398169. PMID 22634212. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398169

  24. Jin L, Han Z, Platisa J, et al. (2012). "Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe". Neuron. 75 (5): 779–785. doi:10.1016/j.neuron.2012.06.040. PMC 3439164. PMID 22958819. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439164

  25. Kralj JM, Douglass AD, Hochbaum DR, et al. (2011). "Optical recording of action potentials in mammalian neurons using a microbial rhodopsin". Nat. Methods. 9 (1): 90–95. doi:10.1038/nmeth.1782. PMC 3248630. PMID 22120467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248630

  26. Barnett L, Platisa J, Popovic M, et al. (2012). "A fluorescent, genetically-encoded voltage probe capable of resolving action potentials". PLoS One. 7 (9): e43454. Bibcode:2012PLoSO...743454B. doi:10.1371/journal.pone.0043454. PMC 3435330. PMID 22970127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435330

  27. Akemann W, Mutoh H, Perron A, et al. (2012). "Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein". J. Neurophysiol. 108 (8): 2323–2337. doi:10.1152/jn.00452.2012. PMID 22815406. /wiki/Journal_of_Neurophysiology

  28. Lam AJ, St-Pierre F, Gong Y, et al. (2013). "Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins". Biophys. J. 104 (2): 1005–1012. Bibcode:2013BpJ...104..683L. doi:10.1016/j.bpj.2012.11.3773. PMC 3461113. PMID 22961245. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461113

  29. Tsutsui H, Jinno Y, Tomita A, et al. (2013). "Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase". J. Physiol. (Lond.). 591 (18): 4427–4437. doi:10.1113/jphysiol.2013.257048. PMC 3784191. PMID 23836686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784191

  30. Gong Y, Wagner MJ, Zhong Li J, et al. (2014). "Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors". Nat. Commun. 5: 3674. Bibcode:2014NatCo...5.3674G. doi:10.1038/ncomms4674. PMC 4247277. PMID 24755708. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247277

  31. Hochbaum DR, Zhao Y, Farhi SL, et al. (2014). "All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins". Nat. Methods. 11 (8): 825–833. doi:10.1038/nmeth.3000. PMC 4117813. PMID 24952910. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117813

  32. Flytzanis NC, Bedbrook CN, Chiu H, et al. (2014). "Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons". Nat. Commun. 5: 4894. Bibcode:2014NatCo...5.4894F. doi:10.1038/ncomms5894. PMC 4166526. PMID 25222271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166526

  33. St-Pierre F, Marshall JD, Yang Y, et al. (2014). "High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor". Nat. Neurosci. 17 (6): 884–889. doi:10.1038/nn.3709. PMC 4494739. PMID 24755780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494739

  34. Gong Y, Huang C, Li JZ, et al. (2015). "High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor". Science. 350 (6266): 1361–1366. Bibcode:2015Sci...350.1361G. doi:10.1126/science.aab0810. PMC 4904846. PMID 26586188. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904846

  35. Treger JS, Priest MF, Bezanilla F (2015). "Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator". eLife. 4: e10482. doi:10.7554/eLife.10482. PMC 4658195. PMID 26599732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658195

  36. Kang BE, Baker BJ (2016). "Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions". Sci. Rep. 6: 23865. Bibcode:2016NatSR...623865K. doi:10.1038/srep23865. PMC 4878010. PMID 27040905. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878010

  37. Yang HH, St-Pierre F, Sun X, et al. (2016). "Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo". Cell. 166 (1): 245–257. doi:10.1016/j.cell.2016.05.031. PMC 5606228. PMID 27264607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606228

  38. Abdelfattah AS, Farhi SL, Zhao Y, et al. (2016). "A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices". J. Neurosci. 36 (8): 2458–2472. doi:10.1523/JNEUROSCI.3484-15.2016. PMC 4764664. PMID 26911693. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764664

  39. Lee S, Geiller T, Jung A, et al. (2017). "Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition". Sci. Rep. 7 (1): 8286. Bibcode:2017NatSR...7.8286L. doi:10.1038/s41598-017-08731-2. PMC 5557843. PMID 28811673. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557843

  40. Chamberland, S; Yang, HH; Pan, MM; Evans, SW; Guan, S; Chavarha, M; Yang, Y; Salesse, C; Wu, H; Wu, JC; Clandinin, TR; Toth, K; Lin, MZ; St-Pierre, F (27 July 2017). "Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators". eLife. 6. doi:10.7554/eLife.25690. PMC 5584994. PMID 28749338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584994

  41. Lee EE, Bezanilla F (2017). "Biophysical Characterization of Genetically Encoded Voltage Sensor ASAP1: Dynamic Range Improvement". Biophys. J. 113 (10): 2178–2181. Bibcode:2017BpJ...113.2178L. doi:10.1016/j.bpj.2017.10.018. PMC 5700382. PMID 29108650. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700382

  42. Adam Y, Kim JJ, Lou S, et al. (2019). "Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics". Nature. 569 (7756): 413–417. Bibcode:2019Natur.569..413A. doi:10.1038/s41586-019-1166-7. PMC 6613938. PMID 31043747. "We fused paQuasAr3 with a trafficking motif from the soma-localized KV2.1 potassium channel, which led to largely soma-localized expression (Fig. 2a, b). We called this construct paQuasAr3-s.", "We called QuasAr3(V59A) 'photoactivated QuasAr3' (paQuasAr3).", and "QuasAr2(K171R)-TS-citrine-TS-TS-TS-ER2, which we call QuasAr3." https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613938

  43. Abdelfattah, Ahmed S.; Kawashima, Takashi; Singh, Amrita; Novak, Ondrej; Liu, Hui; Shuai, Yichun; Huang, Yi-Chieh; Campagnola, Luke; Seeman, Stephanie C.; Yu, Jianing; Zheng, Jihong; Grimm, Jonathan B.; Patel, Ronak; Friedrich, Johannes; Mensh, Brett D.; Paninski, Liam; Macklin, John J.; Murphy, Gabe J.; Podgorski, Kaspar; Lin, Bei-Jung; Chen, Tsai-Wen; Turner, Glenn C.; Liu, Zhe; Koyama, Minoru; Svoboda, Karel; Ahrens, Misha B.; Lavis, Luke D.; Schreiter, Eric R (2019). "Bright and photostable chemigenetic indicators for extended in vivo voltage imaging". Science. 365 (6454). American Association for the Advancement of Science: 699--704.

  44. Villette, V; Chavarha, M; Dimov, IK; Bradley, J; Pradhan, L; Mathieu, B; Evans, SW; Chamberland, S; Shi, D; Yang, R; Kim, BB; Ayon, A; Jalil, A; St-Pierre, F; Schnitzer, MJ; Bi, G; Toth, K; Ding, J; Dieudonné, S; Lin, MZ (12 December 2019). "Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice". Cell. 179 (7): 1590–1608.e23. doi:10.1016/j.cell.2019.11.004. PMC 6941988. PMID 31835034. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941988

  45. Liu, Zhuohe; Lu, Xiaoyu; Villette, Vincent; Gou, Yueyang; Colbert, Kevin L.; Lai, Shujuan; Guan, Sihui; Land, Michelle A.; Lee, Jihwan; Assefa, Tensae; Zollinger, Daniel R.; Korympidou, Maria M.; Vlasits, Anna L.; Pang, Michelle M.; Su, Sharon (2022-08-18). "Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy". Cell. 185 (18): 3408–3425.e29. doi:10.1016/j.cell.2022.07.013. ISSN 0092-8674. PMC 9563101. PMID 35985322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563101

  46. Yang HH, St-Pierre F (2016). "Genetically Encoded Voltage Indicators: Opportunities and Challenges". J. Neurosci. 36 (39): 9977–9989. doi:10.1523/JNEUROSCI.1095-16.2016. PMC 5039263. PMID 27683896. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039263

  47. Kaschula R, Salecker I (2016). "Neuronal Computations Made Visible with Subcellular Resolution". Cell. 166 (1): 18–20. doi:10.1016/j.cell.2016.06.022. PMID 27368098. https://doi.org/10.1016%2Fj.cell.2016.06.022

  48. Gong Y, Huang C, Li JZ, et al. (2015). "High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor". Science. 350 (6266): 1361–1366. Bibcode:2015Sci...350.1361G. doi:10.1126/science.aab0810. PMC 4904846. PMID 26586188. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904846

  49. Cao G, Platisa J, Pieribone VA, et al. (2013). "Genetically targeted optical electrophysiology in intact neural circuits". Cell. 154 (4): 904–913. doi:10.1016/j.cell.2013.07.027. PMC 3874294. PMID 23932121. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874294

  50. Knöpfel T, Gallero-Salas Y, Song C (2015). "Genetically encoded voltage indicators for large scale cortical imaging come of age". Curr. Opin. Chem. Biol. 27: 75–83. doi:10.1016/j.cbpa.2015.06.006. PMID 26115448. /wiki/Current_Opinion_in_Chemical_Biology

  51. Kralj JM, Hochbaum DR, Douglass AD, et al. (2011). "Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein". Science. 333 (6040): 345–348. Bibcode:2011Sci...333..345K. doi:10.1126/science.1204763. PMID 21764748. S2CID 2195943. /wiki/Science_(journal)

  52. Kaestner L, Tian Q, Kaiser E, et al. (2015). "Genetically Encoded Voltage Indicators in Circulation Research". Int. J. Mol. Sci. 16 (9): 21626–21642. doi:10.3390/ijms160921626. PMC 4613271. PMID 26370981. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613271

  53. Zhang, Joe Z.; Termglinchan, Vittavat; Shao, Ning-Yi; Itzhaki, Ilanit; Liu, Chun; Ma, Ning; Tian, Lei; Wang, Vicky Y.; Chang, Alex C. Y.; Guo, Hongchao; Kitani, Tomoya (2019-05-02). "A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles". Cell Stem Cell. 24 (5): 802–811.e5. doi:10.1016/j.stem.2019.02.015. ISSN 1934-5909. PMC 6499654. PMID 30880024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499654

  54. Kulkarni, Rishikesh U; Miller, Evan W (2017). "Voltage imaging: pitfalls and potential". Biochemistry. 56 (39). ACS Publications: 5171--5177. https://pubs.acs.org/doi/pdf/10.1021/acs.biochem.7b00490