Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Hermitian function
Complex function f(x) such that f(-x) = f*(x)

In mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign:

f ∗ ( x ) = f ( − x ) {\displaystyle f^{*}(x)=f(-x)}

(where the ∗ {\displaystyle ^{*}} indicates the complex conjugate) for all x {\displaystyle x} in the domain of f {\displaystyle f} . In physics, this property is referred to as PT symmetry.

This definition extends also to functions of two or more variables, e.g., in the case that f {\displaystyle f} is a function of two variables it is Hermitian if

f ∗ ( x 1 , x 2 ) = f ( − x 1 , − x 2 ) {\displaystyle f^{*}(x_{1},x_{2})=f(-x_{1},-x_{2})}

for all pairs ( x 1 , x 2 ) {\displaystyle (x_{1},x_{2})} in the domain of f {\displaystyle f} .

From this definition it follows immediately that: f {\displaystyle f} is a Hermitian function if and only if

We don't have any images related to Hermitian function yet.
We don't have any YouTube videos related to Hermitian function yet.
We don't have any PDF documents related to Hermitian function yet.
We don't have any Books related to Hermitian function yet.
We don't have any archived web articles related to Hermitian function yet.

Motivation

Hermitian functions appear frequently in mathematics, physics, and signal processing. For example, the following two statements follow from basic properties of the Fourier transform:

  • The function f {\displaystyle f} is real-valued if and only if the Fourier transform of f {\displaystyle f} is Hermitian.
  • The function f {\displaystyle f} is Hermitian if and only if the Fourier transform of f {\displaystyle f} is real-valued.

Since the Fourier transform of a real signal is guaranteed to be Hermitian, it can be compressed using the Hermitian even/odd symmetry. This, for example, allows the discrete Fourier transform of a signal (which is in general complex) to be stored in the same space as the original real signal.

  • If f is Hermitian, then f ⋆ g = f ∗ g {\displaystyle f\star g=f*g} .

Where the ⋆ {\displaystyle \star } is cross-correlation, and ∗ {\displaystyle *} is convolution.

  • If both f and g are Hermitian, then f ⋆ g = g ⋆ f {\displaystyle f\star g=g\star f} .

See also