Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Hydrogen disulfide
Chemical compound

Hydrogen disulfide is the inorganic compound with the formula H2S2. This hydrogen chalcogenide is a pale yellow volatile liquid with a camphor-like odor. It decomposes readily to hydrogen sulfide (H2S) and elemental sulfur.

Related Image Collections Add Image
We don't have any YouTube videos related to Hydrogen disulfide yet.
We don't have any PDF documents related to Hydrogen disulfide yet.
We don't have any Books related to Hydrogen disulfide yet.
We don't have any archived web articles related to Hydrogen disulfide yet.

Structure

The connection of atoms in the hydrogen disulfide molecule is H−S−S−H. The structure of hydrogen disulfide is similar to that of hydrogen peroxide, with C2 point group symmetry. Both molecules are distinctly nonplanar. The dihedral angle between the Ha−S−S and S−S−Hb planes is 90.6°, compared with 111.5° in H2O2. The H−S−S bond angle is 92°, close to 90° for unhybridized divalent sulfur.2

Synthesis

Hydrogen disulfide can be synthesised by cracking polysulfanes (H2Sn) according to this idealized equation:

H2Sn → H2S2 + Sn−2

The main impurity is trisulfane (H2S3).3 The precursor polysulfane is produced by the reaction of hydrochloric acid with aqueous sodium polysulfide. The polysulfane precipitates as an oil.45

Reactions

Upon contact with water or alcohols, hydrogen disulfide readily decomposes under ambient conditions to hydrogen sulfide and sulfur.

It is more acidic than hydrogen sulfide, but the pKa has not been reported.6

In organosulfur chemistry, hydrogen disulfide adds to alkenes to give disulfides and thiols.7

Quantum tunneling and its suppression in deuterium disulfide

The deuterated form of hydrogen disulfide, deuterium disulfide D−S−S−D (dideuterodisulfane), has a similar geometry to H−S−S−H, but its tunneling time is slower, making it a convenient test case for the quantum Zeno effect, in which frequent observation of a quantum system suppresses its normal evolution. Trost and Hornberger8 have calculated that while an isolated D−S−S−D molecule would spontaneously oscillate between left and right chiral forms with a period of 5.6 milliseconds, the presence of a small amount of inert helium gas should stabilize the chiral states, the collisions of the helium atoms in effect "observing" the molecule's momentary chirality and so suppressing spontaneous evolution to the other chiral state.9

Health effects

In high concentrations, it can cause dizziness, disorientation and ultimately unconsciousness.10

Historic literature

References

  1. Steudel, Ralf (2003). "Inorganic Polysulfanes H2Sn with n > 1". Topic in Current Chemistry. Topics in Current Chemistry. Vol. 231. pp. 99–126. doi:10.1007/b13182. ISBN 978-3-540-40378-4. 978-3-540-40378-4

  2. Steudel, Ralf (2003). "Inorganic Polysulfanes H2Sn with n > 1". Topic in Current Chemistry. Topics in Current Chemistry. Vol. 231. pp. 99–126. doi:10.1007/b13182. ISBN 978-3-540-40378-4. 978-3-540-40378-4

  3. Steudel, Ralf (2003). "Inorganic Polysulfanes H2Sn with n > 1". Topic in Current Chemistry. Topics in Current Chemistry. Vol. 231. pp. 99–126. doi:10.1007/b13182. ISBN 978-3-540-40378-4. 978-3-540-40378-4

  4. Steudel, Ralf (2003). "Inorganic Polysulfanes H2Sn with n > 1". Topic in Current Chemistry. Topics in Current Chemistry. Vol. 231. pp. 99–126. doi:10.1007/b13182. ISBN 978-3-540-40378-4. 978-3-540-40378-4

  5. De, A. K. (2001-01-15). A Text Book of Inorganic Chemistry. Imperial College Press. ISBN 978-81-224-1384-7. 978-81-224-1384-7

  6. Steudel, Ralf (2003). "Inorganic Polysulfanes H2Sn with n > 1". Topic in Current Chemistry. Topics in Current Chemistry. Vol. 231. pp. 99–126. doi:10.1007/b13182. ISBN 978-3-540-40378-4. 978-3-540-40378-4

  7. Hazardous Reagents, Robinson Brothers http://www.rbltd.co.uk/?PAGEID=10520

  8. Trost, J.; Hornberger, K. (2009). "Hund's Paradox and the Collisional Stabilization of Chiral Molecules". Phys. Rev. Lett. 103 (2): 023202. arXiv:0811.2140. Bibcode:2009PhRvL.103b3202T. doi:10.1103/PhysRevLett.103.023202. PMID 19659202. /wiki/ArXiv_(identifier)

  9. Month-long calculation solves 82-year-old quantum paradox, Physics Today, September 2009, p. 16 https://www.uni-due.de/~hp0198/pubs/physicstoday_cday.pdf

  10. Stein, Wilkinson, G (2007). Seminars in general adult psychiatry. Royal College of Psychiatrists. ISBN 978-1-904671-44-2. 978-1-904671-44-2