Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of iron
Nuclides with atomic number of 26, but with differing mass numbers

Natural iron (26Fe) consists of four stable isotopes: 5.845% 54Fe (possibly radioactive with half-life >4.4×1020 years), 91.754% 56Fe, 2.119% 57Fe and 0.286% 58Fe. There are 28 known radioisotopes and 8 nuclear isomers, the most stable of which are 60Fe (half-life 2.6 million years) and 55Fe (half-life 2.7 years).

Much of the past work on measuring the isotopic composition of iron has centered on determining 60Fe variations due to processes accompanying nucleosynthesis (i.e., meteorite studies) and ore formation. In the last decade however, advances in mass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work has been driven by the Earth and planetary science communities, though applications to biological and industrial systems are beginning to emerge.

We don't have any images related to Isotopes of iron yet.
We don't have any YouTube videos related to Isotopes of iron yet.
We don't have any PDF documents related to Isotopes of iron yet.
We don't have any Books related to Isotopes of iron yet.

List of isotopes

Nuclide3ZNIsotopic mass (Da)456Half-life78Decaymode910Daughterisotope11Spin andparity121314Natural abundance (mole fraction)
Excitation energyNormal proportion15Range of variation
45Fe261945.01547(30)#2.5(2) ms2p (70%)43Cr3/2+#
β+, p (18.9%)44Cr
β+, 2p (7.8%)43V
β+ (3.3%)45Mn
46Fe262046.00130(32)#13.0(20) msβ+, p (78.7%)45Cr0+
β+ (21.3%)46Mn
β+, 2p?44V
47Fe262146.99235(54)#21.9(2) msβ+, p (88.4%)46Cr7/2−#
β+ (11.6%)47Mn
48Fe262247.980667(99)45.3(6) msβ+ (84.7%)48Mn0+
β+, p (15.3%)47Cr
49Fe262348.973429(26)64.7(3) msβ+, p (56.7%)48Cr(7/2−)
β+ (43.3%)49Mn
50Fe262449.9629880(90)152.0(6) msβ+50Mn0+
β+, p?49Cr
51Fe262550.9568551(15)305.4(23) msβ+51Mn5/2−
52Fe262651.94811336(19)8.275(8) hβ+52Mn0+
52mFe6960.7(3) keV45.9(6) sβ+ (99.98%)52Mn12+
IT (0.021%)52Fe
53Fe262752.9453056(18)8.51(2) minβ+53Mn7/2−
53mFe3040.4(3) keV2.54(2) minIT53Fe19/2−
54Fe262853.93960819(37)Observationally Stable160+0.05845(105)
54mFe6527.1(11) keV364(7) nsIT54Fe10+
55Fe262954.93829116(33)2.7562(4) yEC55Mn3/2−
56Fe17263055.93493554(29)Stable0+0.91754(106)
57Fe263156.93539195(29)Stable1/2−0.02119(29)
58Fe263257.93327358(34)Stable0+0.00282(12)
59Fe263358.93487349(35)44.500(12) dβ−59Co3/2−
60Fe263459.9340702(37)2.62(4)×106 yβ−60Co0+trace
61Fe263560.9367462(28)5.98(6) minβ−61Co(3/2−)
61mFe861.67(11) keV238(5) nsIT61Fe9/2+
62Fe263661.9367918(30)68(2) sβ−62Co0+
63Fe263762.9402727(46)6.1(6) sβ−63Co(5/2−)
64Fe263863.9409878(54)2.0(2) sβ−64Co0+
65Fe263964.9450153(55)805(10) msβ−65Co(1/2−)
β−, n?64Co
65m1Fe393.7(2) keV1.12(15) sβ−?65Co(9/2+)
65m2Fe397.6(2) keV418(12) nsIT65Fe(5/2+)
66Fe264065.9462500(44)467(29) msβ−66Co0+
β−, n?65Co
67Fe264166.9509300(41)394(9) msβ−67Co(1/2-)
β−, n?66Co
67m1Fe403(9) keV64(17) μsIT67Fe(5/2+,7/2+)
67m2Fe450(100)# keV75(21) μsIT67Fe(9/2+)
68Fe264267.95288(21)#188(4) msβ−68Co0+
β−, n?67Co
69Fe264368.95792(22)#162(7) msβ−69Co1/2−#
β−, n?68Co
β−, 2n?67Co
70Fe264469.96040(32)#61.4(7) msβ−70Co0+
β−, n?69Co
71Fe264570.96572(43)#34.3(26) msβ−71Co7/2+#
β−, n?70Co
β−, 2n?69Co
72Fe264671.96860(54)#17.0(10) msβ−72Co0+
β−, n?71Co
β−, 2n?70Co
73Fe264772.97425(54)#12.9(16) msβ−73Co7/2+#
β−, n?72Co
β−, 2n?71Co
74Fe264873.97782(54)#5(5) msβ−74Co0+
β−, n?73Co
β−, 2n?72Co
75Fe264974.98422(64)#9# ms[>620 ns]β−?75Co9/2+#
β−, n?74Co
β−, 2n?73Co
76Fe265075.98863(64)#3# ms[>410 ns]β−?76Co0+
This table header & footer:
  • view

Iron-54

54Fe is observationally stable, but theoretically can decay to 54Cr, with a half-life of more than 4.4×1020 years via double electron capture (εε).18

Iron-56

Main article: Iron-56

56Fe is the most abundant isotope of iron. It is also the isotope with the lowest mass per nucleon, 930.412 MeV/c2, though not the isotope with the highest nuclear binding energy per nucleon, which is nickel-62.19 However, because of the details of how nucleosynthesis works, 56Fe is a more common endpoint of fusion chains inside supernovae, where it is mostly produced as 56Ni. Thus, 56Ni is more common in the universe, relative to other metals, including 62Ni, 58Fe and 60Ni, all of which have a very high binding energy.

The high nuclear binding energy of 56Fe represents the point where further nuclear reactions become energetically unfavorable. Therefore it is among the heaviest elements formed in stellar nucleosynthesis reactions in massive stars. These reactions fuse lighter elements like magnesium, silicon, and sulfur to form heavier elements. Among the heavier elements formed is 56Ni, which subsequently decays to 56Co and then 56Fe.

Iron-57

57Fe is widely used in Mössbauer spectroscopy and the related nuclear resonance vibrational spectroscopy due to the low natural variation in energy of the 14.4 keV nuclear transition.20 The transition was famously used to make the first definitive measurement of gravitational redshift, in the 1960 Pound–Rebka experiment.21

Iron-58

Iron-58 can be used to combat anemia and low iron absorption, to metabolically track iron-controlling human genes, and for tracing elements in nature.2223 Iron-58 is also an assisting reagent in the synthesis of superheavy elements.24

Iron-60

Iron-60 has a half-life of 2.6 million years,2526 but was thought until 2009 to have a half-life of 1.5 million years. It undergoes beta decay to cobalt-60, which then decays with a half-life of about 5 years to stable nickel-60. Traces of iron-60 have been found in lunar samples.

In phases of the meteorites Semarkona and Chervony Kut, a correlation between the concentration of 60Ni, the granddaughter isotope of 60Fe, and the abundance of the stable iron isotopes could be found, which is evidence for the existence of 60Fe at the time of formation of the Solar System. Possibly the energy from the decay of 60Fe contributed, together with the energy from the decay of the radionuclide 26Al, to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of 60Ni in extraterrestrial material may also provide further insight into the origin of the Solar System and its early history.

Iron-60 found in fossilized bacteria in sea floor sediments suggest there was a supernova near the Solar System about 2 million years ago.2728 Iron-60 is also found in sediments from 8 million years ago.29 In 2019, researchers found interstellar 60Fe in Antarctica, which they relate to the Local Interstellar Cloud.30

The distance to the supernova of origin can be estimated by relating the amount of iron-60 intercepted as Earth passes through the expanding supernova ejecta. Assuming that the material ejected in a supernova expands uniformly out from its origin as a sphere with surface area 4πr2. The fraction of the material intercepted by the Earth is dependent on its cross-sectional area (πR2Earth) as it passes through the expanding debris. Where Mej is the mass of ejected material. M Fraction intercepted  = π R Earth  2 4 π r 2 M e j {\displaystyle M_{\text{Fraction intercepted }}={\frac {\pi R_{\text{Earth }}^{2}}{4\pi r^{2}}}M_{ej}} Assuming the intercepted material is distributed uniformly across the surface of the Earth (4πR2Earth), the mass surface density (Σej) of the supernova ejecta on Earth is: Σ e j = M Fraction intercepted  A surface,Earth  = M e j 16 π r 2 {\displaystyle \Sigma _{ej}={\frac {M_{\text{Fraction intercepted }}}{A_{\text{surface,Earth }}}}={\frac {M_{ej}}{16\pi r^{2}}}} The number of 60Fe atoms per unit area found on Earth can be estimated if the typical amount of 60Fe ejected from a supernova is known. This can be done by dividing the surface mass density (Σej) by the atomic mass of 60Fe. N 60 = ( M e j , 60 / m 60 16 π r 2 ) {\displaystyle N_{60}=\left({\frac {M_{ej,60}/m_{60}}{16\pi r^{2}}}\right)} The equation for N60 can be rearranged to find the distance to the supernova. r = M e j , 60 16 π m 60 N 60 {\displaystyle r={\sqrt {\frac {M_{ej,60}}{16\pi m_{60}N_{60}}}}} An example calculation for the distance to the supernova point of origin is given below. This calculation uses speculative values for terrestrial 60Fe atom surface density (N60 ≈ 4 × 1011 atoms/m2) and a rough estimate of the mass of 60Fe ejected by a supernova (10-5 M☉). r = 10 − 5 M ⊙ 16 π ( 60 m p ) N 60 {\displaystyle r={\sqrt {\frac {10^{-5}M_{\odot }}{16\pi \left(60m_{p}\right)N_{60}}}}} r = 3 × 10 18 m = 100 p c {\displaystyle r=3\times 10^{18}m=100pc} More sophisticated analyses have been reported that take into consideration the flux and deposition of 60Fe as well as possible interfering background sources.31

Cobalt-60, the decay product of iron-60, emits 1.173 MeV and 1.332 MeV as it decays. These gamma-ray lines have long been important targets for gamma-ray astronomy, and have been detected by the gamma-ray observatory INTEGRAL. The signal traces the Galactic plane, showing that 60Fe synthesis is ongoing in our Galaxy, and probing element production in massive stars.3233

Isotope masses from:

Isotopic compositions and standard atomic masses from:

Half-life, spin, and isomer data selected from:

Further reading

References

  1. Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. Bibcode:1998PhRvC..58.2566B. doi:10.1103/PhysRevC.58.2566. /wiki/Bibcode_(identifier)

  2. N. Dauphas; O. Rouxel (2006). "Mass spectrometry and natural variations of iron isotopes". Mass Spectrometry Reviews. 25 (4): 515–550. Bibcode:2006MSRv...25..515D. doi:10.1002/mas.20078. PMID 16463281. /wiki/Mass_Spectrometry_Reviews

  3. mFe – Excited nuclear isomer. /wiki/Nuclear_isomer

  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  5. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  6. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  11. Bold symbol as daughter – Daughter product is stable.

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. ( ) spin value – Indicates spin with weak assignment arguments.

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  16. Believed to decay by β+β+ to 54Cr with a half-life of over 4.4×1020 a[4] /wiki/Annum

  17. Lowest mass per nucleon of all nuclides; End product of stellar nucleosynthesis /wiki/Nucleosynthesis

  18. Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. Bibcode:1998PhRvC..58.2566B. doi:10.1103/PhysRevC.58.2566. /wiki/Bibcode_(identifier)

  19. Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". American Journal of Physics. 63 (7): 653. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828. https://ui.adsabs.harvard.edu/abs/1995AmJPh..63..653F/abstract

  20. R. Nave. "Mossbauer Effect in Iron-57". HyperPhysics. Georgia State University. Retrieved 2009-10-13. http://hyperphysics.phy-astr.gsu.edu/Hbase/Nuclear/mossfe.html

  21. Pound, R. V.; Rebka Jr. G. A. (April 1, 1960). "Apparent weight of photons". Physical Review Letters. 4 (7): 337–341. Bibcode:1960PhRvL...4..337P. doi:10.1103/PhysRevLett.4.337. https://doi.org/10.1103%2FPhysRevLett.4.337

  22. "Iron-58 Metal Isotope". American Elements. Retrieved 2023-06-28. https://www.americanelements.com/iron-58-metal-isotope-13968-47-3

  23. Vasiliev, Petr. "Iron-58, Iron-58 Isotope, Enriched Iron-58, Iron-58 Metal". www.buyisotope.com. Retrieved 2023-06-28. https://www.buyisotope.com/iron-58-isotope.php

  24. Vasiliev, Petr. "Iron-58, Iron-58 Isotope, Enriched Iron-58, Iron-58 Metal". www.buyisotope.com. Retrieved 2023-06-28. https://www.buyisotope.com/iron-58-isotope.php

  25. Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. (2009). "New Measurement of the 60Fe Half-Life". Physical Review Letters. 103 (7): 72502. Bibcode:2009PhRvL.103g2502R. doi:10.1103/PhysRevLett.103.072502. PMID 19792637. https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A17743

  26. "Eisen mit langem Atem". scienceticker. 27 August 2009. Archived from the original on 3 February 2018. Retrieved 22 May 2010. https://web.archive.org/web/20180203071537/http://www.scienceticker.info/2009/08/27/eisen-mit-langem-atem/#more-5677

  27. Belinda Smith (Aug 9, 2016). "Ancient bacteria store signs of supernova smattering". Cosmos. https://cosmosmagazine.com/space/ancient-bacteria-store-signs-of-supernova-smattering

  28. Peter Ludwig; et al. (Aug 16, 2016). "Time-resolved 2-million-year-old supernova activity discovered in Earth's microfossil record". PNAS. 113 (33): 9232–9237. arXiv:1710.09573. Bibcode:2016PNAS..113.9232L. doi:10.1073/pnas.1601040113. PMC 4995991. PMID 27503888. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995991

  29. Colin Barras (Oct 14, 2017). "Fires may have given our evolution a kick-start". New Scientist. 236 (3147): 7. Bibcode:2017NewSc.236....7B. doi:10.1016/S0262-4079(17)31997-8. https://www.newscientist.com/article/mg23631474-400-exploding-stars-could-have-kickstarted-our-ancestors-evolution/

  30. Koll, Dominik; et., al. (2019). "Interstellar 60Fe in Antarctica". Physical Review Letters. 123 (7): 072701. Bibcode:2019PhRvL.123g2701K. doi:10.1103/PhysRevLett.123.072701. hdl:1885/298253. PMID 31491090. S2CID 201868513. /wiki/Bibcode_(identifier)

  31. Ertel, Adrienne F.; Fry, Brian J.; Fields, Brian D.; Ellis, John (20 April 2023). "Supernova Dust Evolution Probed by Deep-sea 60Fe Time History". The Astrophysical Journal. 947 (2): 58–83 – via The Institute of Physics (IOP). https://doi.org/10.3847/1538-4357/acb699

  32. Harris, M. J.; Knödlseder, J.; Jean, P.; Cisana, E.; Diehl, R.; Lichti, G. G.; Roques, J. -P.; Schanne, S.; Weidenspointner, G. (2005-04-01). "Detection of γ-ray lines from interstellar 60Fe by the high resolution spectrometer SPI". Astronomy and Astrophysics. 433 (3): L49 – L52. arXiv:astro-ph/0502219. Bibcode:2005A&A...433L..49H. doi:10.1051/0004-6361:200500093. ISSN 0004-6361. https://ui.adsabs.harvard.edu/abs/2005A&A...433L..49H

  33. Wang, W.; Siegert, T.; Dai, Z. G.; Diehl, R.; Greiner, J.; Heger, A.; Krause, M.; Lang, M.; Pleintinger, M. M. M.; Zhang, X. L. (2020-02-01). "Gamma-Ray Emission of 60Fe and 26Al Radioactivity in Our Galaxy". The Astrophysical Journal. 889 (2): 169. arXiv:1912.07874. Bibcode:2020ApJ...889..169W. doi:10.3847/1538-4357/ab6336. ISSN 0004-637X. https://doi.org/10.3847%2F1538-4357%2Fab6336