Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of aluminium

Aluminium or aluminum (13Al) has 23 known isotopes from 21Al to 43Al and 4 known isomers. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = 7.2×105 y) occur naturally, however 27Al comprises nearly all natural aluminium. Other than 26Al, all radioisotopes have half-lives under 7 minutes, most under a second. The standard atomic weight is 26.9815385(7). 26Al is produced from argon in the atmosphere by spallation caused by cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales. 26Al has also played a significant role in the study of meteorites.

We don't have any images related to Isotopes of aluminium yet.
We don't have any YouTube videos related to Isotopes of aluminium yet.
We don't have any PDF documents related to Isotopes of aluminium yet.
We don't have any Books related to Isotopes of aluminium yet.
We don't have any archived web articles related to Isotopes of aluminium yet.

List of isotopes

Nuclide1ZNIsotopic mass (Da)234Half-life5Decaymode67Daughterisotope8Spin andparity91011Isotopicabundance
Excitation energy12
21Al1313821.0278(13)>1.1 zsp20Mg(5/2+)
22Al13922.01942310(32)1491.1(5) msβ+, p (55%)21Na(4)+
β+ (44%)22Mg
β+, 2p (1.10%)20Ne
β+, α (0.038%)18Ne
23Al131023.00724435(37)446(6) msβ+ (98.78%)23Mg5/2+
β+, p (1.22%)22Na
24Al131123.99994760(24)2.053(4) sβ+ (99.96%)24Mg4+
β+, α (0.035%)20Ne
β+, p (0.0016%)23Na
24mAl425.8(1) keV130(3) msIT (82.5%)24Al1+
β+ (17.5%)24Mg
β+, α (0.028%)20Ne
25Al131224.990428308(69)7.1666(23) sβ+25Mg5/2+
26Al15131325.986891876(71)7.17(24)×105 yβ+ (85%)26Mg5+Trace16
EC (15%)17
26mAl228.306(13) keV6.3460(5) sβ+26Mg0+
27Al131426.981538408(50)Stable5/2+1.0000
28Al131527.981910009(52)2.245(5) minβ−28Si3+
29Al131628.98045316(37)6.56(6) minβ−29Si5/2+
30Al131729.9829692(21)3.62(6) sβ−30Si3+
31Al131830.9839498(24)644(25) msβ− (>98.4%)31Si5/2+
β−, n (<1.6%)30Si
32Al131931.9880843(77)32.6(5) msβ− (99.3%)32Si1+
β−, n (0.7%)31Si
32mAl956.6(5) keV200(20) nsIT32Al(4+)
33Al132032.9908777(75)41.46(9) msβ− (91.5%)33Si5/2+
β−, n (8.5%)32Si
34Al132133.9967819(23)53.73(13) msβ− (74%)34Si4−
β−, n (26%)33Si
34mAl46.4(17) keV22.1(2) msβ− (89%)34Si1+
β−, n (11%)33Si
35Al132234.9997598(79)38.16(21) msβ− (64.2%)35Si(5/2+,3/2+)
β−, n (35.8%)34Si
36Al132336.00639(16)90(40) msβ− (>69%)36Si
β−, n (<31%)35Si
37Al132437.01053(19)11.4(3) msβ−, n (52%)36Si5/2+#
β− (<47%)37Si
β−, 2n (>1%)35Si
38Al132538.01768(16)#9.0(7) msβ−, n (84%)37Si0−#
β− (16%)38Si
39Al132639.02307(32)#7.6(16) msβ−, n (97%)38Si5/2+#
β− (3%)39Si
40Al132740.03094(32)#5.7(3 (stat), 2 (sys)) ms18β−, n (64%)39Si
β−, 2n (20%)38Si
β− (16%)40Si
41Al132841.03713(43)#3.5(8 (stat), 4 (sys)) ms19β−, n (86%)40Si5/2+#
β−, 2n (11%)39Si
β− (3%)41Si
42Al132942.04508(54)#3# ms[>170 ns]
43Al133043.05182(64)#4# ms[>170 ns]β−?43Si5/2+#
This table header & footer:
  • view

Aluminium-26

Main article: Aluminium-26

Cosmogenic aluminium-26 was first described in studies of the Moon and meteorites. Meteorite fragments, after departure from their parent bodies, are exposed to intense cosmic-ray bombardment during their travel through space, causing substantial 26Al production. After falling to Earth, atmospheric shielding protects the meteorite fragments from further 26Al production, and its decay can then be used to determine the meteorite's terrestrial age. Meteorite research has also shown that 26Al was relatively abundant at the time of formation of our planetary system. Most meteoriticists believe that the energy released by the decay of 26Al was responsible for the melting and differentiation of some asteroids after their formation 4.55 billion years ago.20

References

  1. mAl – Excited nuclear isomer. /wiki/Nuclear_isomer

  2. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  3. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  4. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  5. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. Modes of decay: IT:Isomeric transition /wiki/Isomeric_transition

  8. Bold symbol as daughter – Daughter product is stable.

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. ( ) spin value – Indicates spin with weak assignment arguments.

  11. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  12. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  13. Kostyleva, D.; Xu, X.-D.; Mukha, I.; et al. (2024-09-03). "Observation and spectroscopy of the proton-unbound nucleus 21Al". Physical Review C. 110 (3). arXiv:2406.04771. doi:10.1103/PhysRevC.110.L031301. ISSN 2469-9985. /wiki/ArXiv_(identifier)

  14. Campbell, S. E.; Bollen, G.; Brown, B. A.; Dockery, A.; Ireland, C. M.; Minamisono, K.; Puentes, D.; Rickey, B. J.; Ringle, R.; Yandow, I. T.; Fossez, K.; Ortiz-Cortes, A.; Schwarz, S.; Sumithrarachchi, C. S.; Villari, A. C. C. (9 April 2024). "Precision Mass Measurement of the Proton Dripline Halo Candidate Al 22". Physical Review Letters. 132 (15). doi:10.1103/PhysRevLett.132.152501. /wiki/Doi_(identifier)

  15. Used in radiodating events early in the Solar System's history and meteorites /wiki/Radiodating#The_26Al_-_26Mg_chronometer

  16. cosmogenic /wiki/Cosmogenic_nuclide

  17. "Physics 6805 Topics in Nuclear Physics". Ohio State University. Archived from the original on 2 September 2021. Retrieved 12 June 2019. https://web.archive.org/web/20210902015622/https://www.asc.ohio-state.edu/physics/ntg/6805/figures/al26scheme.jpg

  18. Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi:10.1103/PhysRevLett.129.212501. PMID 36461950. S2CID 253600995. https://www.osti.gov/biblio/1898972

  19. Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi:10.1103/PhysRevLett.129.212501. PMID 36461950. S2CID 253600995. https://www.osti.gov/biblio/1898972

  20. R. T. Dodd (1986). Thunderstones and Shooting Stars. Harvard University Press. pp. 89–90. ISBN 978-0-674-89137-1. 978-0-674-89137-1