Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of antimony

Antimony (51Sb) occurs in two stable isotopes, 121Sb and 123Sb. There are 37 artificial radioactive isotopes, the longest-lived of which are 125Sb, with a half-life of 2.75856 years; 124Sb, with half-life 60.2 days; and 126Sb, with half-life 12.35 days. All other isotopes have half-lives less than 4 days, most less than an hour. There are also many isomers, the longest-lived of which is 120m1Sb with half-life 5.76 days.

We don't have any images related to Isotopes of antimony yet.
We don't have any YouTube videos related to Isotopes of antimony yet.
We don't have any PDF documents related to Isotopes of antimony yet.
We don't have any Books related to Isotopes of antimony yet.
We don't have any archived web articles related to Isotopes of antimony yet.

List of isotopes

Nuclide1ZNIsotopic mass (Da)234Half-life5Decaymode67Daughterisotope89Spin andparity101112Natural abundance (mole fraction)
Excitation energy13Normal proportion14Range of variation
104Sb5153103.93634(11)#470(130) msβ+?104Sn
p (<7%)103Sn
β+, p (<7%)103In
α?100In
105Sb5154104.931277(23)1.12(16) sβ+ (>99.9%)105Sn(5/2+)
p (<0.1%)104Sn
β+, p?104In
106Sb5155105.9286380(80)0.6(2) sβ+106Sn(2+)
106mSb103.5(3) keV226(14) nsIT106Sb(4+)
107Sb5156106.9241506(45)4.0(2) sβ+107Sn5/2+#
108Sb5157107.9222267(59)7.4(3) sβ+108Sn(4+)
109Sb5158108.9181412(57)17.2(5) sβ+109Sn5/2+#
110Sb5159109.9168543(64)23.6(3) sβ+110Sn(3+)
111Sb5160110.9132182(95)75(1) sβ+111Sn(5/2+)
112Sb5161111.912400(19)53.5(6) sβ+112Sn(3+)
112mSb825.9(4) keV536(22) nsIT112Sb(8−)
113Sb5162112.909375(18)6.67(7) minβ+113Sn5/2+
114Sb5163113.909289(21)3.49(3) minβ+114Sn3+
114mSb495.5(7) keV219(12) μsIT114Sb(8−)
115Sb5164114.906598(17)32.1(3) minβ+115Sn5/2+
115mSb2796.26(9) keV159(3) nsIT115Sb(19/2)−
116Sb5165115.9067927(55)15.8(8) minβ+116Sn3+
116m1Sb93.99(5) keV194(4) nsIT116Sb1+
116m2Sb390(40) keV60.3(6) minβ+116Sn8−
117Sb5166116.9048415(91)2.97(2) hβ+117Sn5/2+
117m1Sb3130.76(19) keV355(17) μsIT117Sb(25/2)+
117m2Sb3230.7(2) keV290(5) nsIT117Sb(23/2−)
118Sb5167117.9055322(32)3.6(1) minβ+118Sn1+
118m1Sb50.814(21) keV20.6(6) μsIT118Sb3+
118m2Sb250(6) keV5.01(3) hβ+118Sn8−
119Sb5168118.9039441(75)38.19(22) hEC119Sn5/2+
119m1Sb2553.6(3) keV130(3) nsIT119Sb19/2−
119m2Sb2841.7(4) keV835(81) msIT119Sb25/2+
120Sb5169119.9050803(77)15.89(4) minβ+120Sn1+
120m1Sb150(100)# keV5.76(2) dβ+120Sn8−
120m2Sb78.16(5) keV246(2) nsIT120Sb(3+)
120m3Sb2328(100)# keV400(8) nsIT120Sb13+
121Sb165170120.9038114(27)Stable5/2+0.5721(5)
121mSb2751(17) keV179(6) μsIT121Sb(25/2+)
122Sb5171121.9051693(27)2.7238(2) dβ− (97.59%)122Te2−
β+ (2.41%)122Sn
122m1Sb61.4131(5) keV1.86(8) μsIT122Sb3+
122m2Sb137.4726(8) keV0.53(3) msIT122Sb5+
122m3Sb163.5591(17) keV4.191(3) minIT122Sb8−
123Sb175172122.9042153(15)Stable7/2+0.4279(5)
123m1Sb2237.8(3) keV214(3) nsIT123Sb19/2−
123m2Sb2613.4(4) keV65(1) μsIT123Sb23/2+
124Sb5173123.9059371(15)60.20(3) dβ−124Te3−
124m1Sb10.8627(8) keV93(5) sIT (75%)124Sb5+
β− (25%)124Te
124m2Sb36.8440(14) keV20.2(2) minIT124m1Sb(8)−
124m3Sb40.8038(7) keV3.2(3) μsIT124Sb(3+)
125Sb185174124.9052543(27)2.7576(11) yβ−125Te7/2+
125m1Sb1971.25(20) keV4.1(2) μsIT125Sb15/2−
125m2Sb2112.1(3) keV28.5(5) μsIT125Sb19/2−
125m3Sb2471.0(4) keV277.0(64) nsIT125Sb(23/2)+
126Sb5175125.907253(34)12.35(6) dβ−126Te8−
126m1Sb17.7(3) keV19.15(8) minβ− (86%)126Te5+
IT (14%)126Sb
126m2Sb40.4(3) keV~11 sIT126m1Sb3−
126m3Sb104.6(3) keV553(5) nsIT126Sb3+
126m4Sb1810.7(17) keV90(16) nsIT126Sb(13+)
127Sb5176126.9069256(55)3.85(5) dβ−127Te7/2+
127m1Sb1920.19(21) keV11.7(1) μsIT127Sb15/2−
127m2Sb2324.7(4) keV269(5) nsIT127Sb23/2+
128Sb5177127.909146(20)9.05(4) hβ−128Te8−
128m1Sb1910(6) keV10.41(18) minβ− (96.4%)128Te5+
IT (3.6%)128Sb
128m2Sb1617.3(7) keV500(20) nsIT128Sb(11+)
128m3Sb1769.9(12) keV217(7) nsIT128Sb(13+)
129Sb5178128.909147(23)4.366(26) hβ−129Te7/2+
129m1Sb1851.31(6) keV17.7(1) minβ− (85%)129Te19/2−
IT (15%)129Sb
129m2Sb1861.06(5) keV2.23(17) μsIT129Sb15/2−
129m3Sb2139.4(3) keV0.89(3) μsIT129Sb23/2+
130Sb5179129.911663(15)39.5(8) minβ−130Te8−
130m1Sb4.80(20) keV6.3(2) minβ−130Te4+
130m2Sb84.67(4) keV800(100) nsIT130Sb6−
130m3Sb1508(1) keV600(15) nsIT130Sb(11+)
130m4Sb1544.7(5) keV1.25(1) μsIT130Sb(13+)
131Sb5180130.9119893(22)23.03(4) minβ−131Te7/2+
131m1Sb1676.06(6) keV64.2(26) μsIT131Sb15/2−
131m2Sb1687.2(9) keV4.3(8) μsIT131Sb19/2−
131m3Sb2165.6(15) keV0.97(3) μsIT131Sb23/2+
132Sb5181131.9145141(29)202.79(7) minβ−132Te(4)+
132m1Sb139.3(20) keV214.10(5) minβ−132Te(8−)
132m2Sb254.5(3) keV102(4) nsIT132Sb(6−)
133Sb5182132.9152721(34)2.34(5) minβ−133Te(7/2+)
133mSb4541(9) keV16.54(19) μsIT133Sb(21/2+)
134Sb5183133.9205373(33)674(4) msβ−134Te(0-)
β−, n?133Te
134mSb279(1) keV10.01(4) sβ− (99.91%)134Te(7−)
β−, n (0.088%)133Te
135Sb5184134.9251844(28)1.668(9) sβ− (80.9%)135Te(7/2+)
β−, n (19.1%)134Te
136Sb5185135.9307490(63)0.923(14) sβ− (75.2%)136Te(1−)
β−, n (24.7%)135Te
β−, 2n (0.14%)134Te
136mSb269.3(5) keV570(5) nsIT136Sb(6−)
137Sb5186136.935523(56)497(21) msβ− (51%)137Te7/2+#
β−, n (49%)136Te
β−, 2n?135Te
138Sb5187137.94133(32)#333(7) msβ−, n (72%)137Te(3−)
β− (28%)138Te
β−, 2n?136Te
139Sb5188138.94627(43)#182(9) msβ−, n (90%)138Te7/2+#
β− (10%)139Te
β−, 2n?137Te
140Sb5189139.95235(64)#170(6) msβ− (69%)140Te(3−)
β−, n (23%)139Te
β−, 2n (7.6%)138Te
140mSb330(30)# keV41(8) μsIT140Sb(6−,7−)
141Sb5190140.95755(54)#103(29) msβ−141Te7/2+#
β−, n?140Te
β−, 2n?139Te
142Sb5191141.96392(32)#80(50) msβ−142Te
β−, n?141Te
β−, 2n?140Te
This table header & footer:
  • view

See also

Daughter products other than antimony

References

  1. mSb – Excited nuclear isomer. /wiki/Nuclear_isomer

  2. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  3. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  4. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  5. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  8. Bold italics symbol as daughter – Daughter product is nearly stable.

  9. Bold symbol as daughter – Daughter product is stable.

  10. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  11. ( ) spin value – Indicates spin with weak assignment arguments.

  12. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  15. Order of ground state and isomer is uncertain.

  16. Fission product /wiki/Fission_product

  17. Fission product /wiki/Fission_product

  18. Fission product /wiki/Fission_product

  19. Order of ground state and isomer is uncertain.

  20. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  21. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19