Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of gold
Nuclides with atomic number of 79 but with different mass numbers

Gold (79Au) has one stable isotope, 197Au, and 40 radioisotopes, with 195Au being the most stable with a half-life of 186 days. Gold is currently considered the heaviest monoisotopic element. Bismuth formerly held that distinction until alpha-decay of the 209Bi isotope was observed. All isotopes of gold are either radioactive or, in the case of 197Au, observationally stable, meaning that 197Au is predicted to be radioactive but no actual decay has been observed.

We don't have any images related to Isotopes of gold yet.
We don't have any YouTube videos related to Isotopes of gold yet.
We don't have any PDF documents related to Isotopes of gold yet.
We don't have any Books related to Isotopes of gold yet.
We don't have any archived web articles related to Isotopes of gold yet.

List of isotopes

Nuclide2ZNIsotopic mass (Da)345Half-life67Decaymode89Daughterisotope1011Spin andparity121314Isotopicabundance
Excitation energy15
169Au167990168.99808(32)#1.16+0.50−0.47 μsp (~94%)168Pt(11/2−)
α (~6%)165mIr
170Au177991169.99602(22)#286+50−40 μsp (89%)169Pt(2)−
α (11%)166Ir
170mAu18282(10) keV617+50−40 μsp (58%)169Pt(9)+
α (42%)166mIr
171Au197992170.991882(22)22+3−2 μsp170Pt1/2+
α?167Ir
171mAu20258(13) keV1.09(3) msα (66%)167mIr11/2−
p (34%)170Pt
172Au7993171.99000(6)28(4) msα (98%)168Ir(2)−
p (2%)171Pt
β+172Pt
172mAu21160(250) keV11.0(10) msα168Ir(9,10)+
p?171Pt
173Au7994172.986224(24)25.5(8) msα (86%)169Ir(1/2+)
β+ (14%)173Pt
173mAu214(21) keV12.2(1) msα (89%)169Ir(11/2−)
β+ (11%)173Pt
174Au7995173.98491(11)#139(3) msα (90%)170Ir(3−)
β+ (10%)174Pt
174mAu130(50)# keV162(2) msα?170Ir(9+)
β+?174Pt
175Au7996174.98132(4)200(3) msα (88%)171Ir1/2+
β+ (12%)175Pt
175mAu164(11)# keV136(1) msα (75%)171Ir(11/2−)
β+ (25%)175Pt
176Au7997175.98012(4)1.05(1) sα (75%)172Ir(3−,4−)
β+ (25%)176Pt
176mAu22139(13) keV1.36(2) sα?172Ir(8+,9+)
β+?176Pt
177Au7998176.976870(11)1.501(20) sβ+ (60%)177Pt1/2+
α (40%)173Ir
177mAu190(7) keV1.193(13) sα (60%)173Ir11/2−
β+ (40%)177Pt
178Au7999177.976057(11)3.4(5) sβ+ (84%)178Pt(2+,3−)
α (16%)174Ir
178m1Au50.3(2) keV300(10) nsIT178Au(4−,5+)
178m2Au186(14) keV2.7(5) sβ+ (82%)178Pt(7+,8−)
α (18%)174Ir
178m3Au243(14) keV390(10) nsIT178Au(5+,6)
179Au79100178.973174(13)7.1(3) sβ+ (78.0%)179Pt1/2+
α (22.0%)175Ir
179mAu89.5(3) keV327(5) nsIT179Au(3/2−)
180Au79101179.9724898(51)7.9(3) sβ+ (99.42%)180Pt(1+)
α (0.58%)176Ir
181Au79102180.970079(21)13.7(14) sβ+ (97.3%)181Pt(5/2−)
α (2.7%)177Ir
182Au79103181.969614(20)15.5(4) sβ+ (99.87%)182Pt(2+)
α (0.13%)178Ir
183Au79104182.967588(10)42.8(10) sβ+ (99.45%)183Pt5/2−
α (0.55%)179Ir
183mAu73.10(1) keV>1 μsIT183Au(1/2)+
184Au79105183.967452(24)20.6(9) sβ+ (99.99%)184Pt5+
α (0.013%)180Ir
184mAu68.46(4) keV47.6(14) sβ+ (70%)184Pt2+
IT (30%)184Au
α (0.013%)180Ir
185Au79106184.9657989(28)4.25(6) minβ+ (99.74%)185Pt5/2−
α (0.26%)181Ir
185mAu2350(50)# keV6.8(3) minβ+185Pt1/2+#
IT?185Au
186Au79107185.965953(23)10.7(5) minβ+186Pt3−
α (8×10−4%)182Ir
186mAu227.77(7) keV110(10) nsIT186Au2+
187Au79108186.964542(24)8.3(2) minβ+187Pt1/2+
α?183Ir
187mAu120.33(14) keV2.3(1) sIT187Au9/2−
188Au79109187.9652480(29)8.84(6) minβ+188Pt1−
189Au79110188.963948(22)28.7(4) minβ+189Pt1/2+
α? (<3×10−5%)185Ir
189m1Au247.25(16) keV4.59(11) minβ+189Pt11/2−
IT?189Au
189m2Au325.12(16) keV190(15) nsIT189Au9/2−
189m3Au2554.8(8) keV242(10) nsIT189Au31/2+
190Au79111189.964752(4)42.8(10) minβ+190Pt1−
α? (<10−6%)186Ir
190mAu24200(150)# keV125(20) msIT190Au11−#
β+?190Pt
191Au79112190.963716(5)3.18(8) hβ+191Pt3/2+
191m1Au266.2(7) keV920(110) msIT191Au11/2−
191m2Au2489.6(9) keV402(20) nsIT191Au31/2+
192Au79113191.964818(17)4.94(9) hβ+192Pt1−
192m1Au135.41(25) keV29 msIT192Au5+
192m2Au431.6(5) keV160(20) msIT192Au11−
193Au79114192.964138(9)17.65(15) hβ+25193Pt3/2+
193m1Au290.20(4) keV3.9(3) sIT (99.97%)193Au11/2−
β+ (0.03%)193Pt
193m2Au2486.7(6) keV150(50) nsIT193Au31/2+
194Au79115193.9654191(23)38.02(10) hβ+194Pt1−
194m1Au107.4(5) keV600(8) msIT194Au5+
194m2Au475.8(6) keV420(10) msIT194Au11−
195Au79116194.9650378(12)186.01(6) dEC195Pt3/2+
195m1Au318.58(4) keV30.5(2) sIT195Au11/2−
195m2Au2501(20)# keV12.89(21) μsIT195Au31/2(−)
196Au79117195.966571(3)6.165(11) dβ+ (93.0%)196Pt2−
β− (7.0%)196Hg
196m1Au84.656(20) keV8.1(2) sIT196Au5+
196m2Au595.66(4) keV9.603(22) hIT196Au12−
197Au2679118196.9665701(6)Observationally Stable273/2+1.0000
197m1Au409.15(8) keV7.73(6) sIT197Au11/2−
197m2Au2532.5(10) keV150(5) nsIT197Au27/2+#
198Au79119197.9682437(6)2.69464(14) dβ−198Hg2−
198m1Au312.2227(20) keV124(4) nsIT198Au5+
198m2Au811.9(15) keV2.272(16) dIT198Au12−
199Au79120198.9687666(6)3.139(7) dβ−199Hg3/2+
199mAu548.9405(21) keV440(30) μsIT199Au11/2−
200Au79121199.970757(29)48.4(3) minβ−200Hg(1−)
200mAu1010(40) keV18.7(5) hβ− (84%)200Hg12−
IT (16%)200Au
201Au79122200.971658(3)26.0(8) minβ−201Hg3/2+
201m1Au594(5) keV730(630) μsIT201Au11/2-
201m2Au1610(5) keV5.6(24) μsIT201Au19/2+#
202Au79123201.973856(25)28.4(12) sβ−202Hg(1−)
203Au79124202.9751545(33)60(6) sβ−203Hg3/2+
203mAu641(3) keV140(44) μsIT203Au11/2−#
204Au79125203.97811(22)#38.3(13) sβ−204Hg(2−)
204mAu3816(500)# keV2.1(3) μsIT204Au16+#
205Au79126204.98006(22)#32.0(14) sβ−205Hg3/2+#
205m1Au907(5) keV6(2) sIT?205Au11/2−#
β−?205Hg
205m2Au2849.7(4) keV163(5) nsIT205Au19/2+#
206Au79127205.98477(32)#47(11) sβ−206Hg6+#
207Au79128206.98858(32)#3# s[>300 ns]β−?207Hg3/2+#
β−, n?206Hg
208Au79129207.99366(32)#20# s[>300 ns]β−?208Hg6+#
β−, n?207Hg
209Au79130208.99761(43)#1# s[>300 ns]β−?209Hg3/2+#
β−, n?208Hg
210Au79131210.00288(43)#10# s[>300 ns]β−?210Hg6+#
β−, n?209Hg
This table header & footer:
  • view

References

  1. Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098. /wiki/ArXiv_(identifier)

  2. mAu – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: EC:Electron captureIT:Isomeric transitionp:Proton emission /wiki/Electron_capture

  10. Bold italics symbol as daughter – Daughter product is nearly stable.

  11. Bold symbol as daughter – Daughter product is stable.

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. ( ) spin value – Indicates spin with weak assignment arguments.

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  16. Hilton, Joshua Ben. "Decays of new nuclides 169Au, 170Hg, 165Pt and the ground state of 165Ir discovered using MARA" (PDF). University of Liverpool. Retrieved 11 June 2023. https://core.ac.uk/download/pdf/237018732.pdf

  17. Kettunen, H.; Enqvist, T.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kuusiniemi, P.; Leino, M.; Leppänen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. (28 May 2004). "Decay studies of Au 170 , 171 , Hg 171 – 173 , and Tl 176". Physical Review C. 69 (5): 054323. doi:10.1103/PhysRevC.69.054323. ISSN 0556-2813. Retrieved 11 June 2023. https://journals.aps.org/prc/pdf/10.1103/PhysRevC.69.054323

  18. Kettunen, H.; Enqvist, T.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kuusiniemi, P.; Leino, M.; Leppänen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. (28 May 2004). "Decay studies of Au 170 , 171 , Hg 171 – 173 , and Tl 176". Physical Review C. 69 (5): 054323. doi:10.1103/PhysRevC.69.054323. ISSN 0556-2813. Retrieved 11 June 2023. https://journals.aps.org/prc/pdf/10.1103/PhysRevC.69.054323

  19. Kettunen, H.; Enqvist, T.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kuusiniemi, P.; Leino, M.; Leppänen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. (28 May 2004). "Decay studies of Au 170 , 171 , Hg 171 – 173 , and Tl 176". Physical Review C. 69 (5): 054323. doi:10.1103/PhysRevC.69.054323. ISSN 0556-2813. Retrieved 11 June 2023. https://journals.aps.org/prc/pdf/10.1103/PhysRevC.69.054323

  20. Kettunen, H.; Enqvist, T.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kuusiniemi, P.; Leino, M.; Leppänen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. (28 May 2004). "Decay studies of Au 170 , 171 , Hg 171 – 173 , and Tl 176". Physical Review C. 69 (5): 054323. doi:10.1103/PhysRevC.69.054323. ISSN 0556-2813. Retrieved 11 June 2023. https://journals.aps.org/prc/pdf/10.1103/PhysRevC.69.054323

  21. Order of ground state and isomer is uncertain.

  22. Order of ground state and isomer is uncertain.

  23. Order of ground state and isomer is uncertain.

  24. Order of ground state and isomer is uncertain.

  25. Theoretically capable of α decay to 189Ir

  26. Potential material for salted bombs /wiki/Salted_bomb

  27. Theoretically predicted to undergo α decay to 193Ir