Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of mercury

There are seven stable isotopes of mercury (80Hg) with 202Hg being the most abundant (29.86%). The longest-lived radioisotopes are 194Hg with a half-life of 444 years, and 203Hg with a half-life of 46.612 days. Most of the remaining 40 radioisotopes have half-lives that are less than a day. 199Hg and 201Hg are the most often studied NMR-active nuclei, having spin quantum numbers of 1/2 and 3/2 respectively. All isotopes of mercury are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. These isotopes are predicted to undergo either alpha decay or double beta decay.

List of isotopes

Nuclide1ZNIsotopic mass (Da)234Half-life56Decaymode78Daughterisotope9Spin andparity101112Natural abundance (mole fraction)
Excitation energy13Normal proportion14Range of variation
170Hg8090170.00581(32)#310(250) μsα166Pt0+
171Hg8091171.00359(33)#70(30) μsα167Pt3/2−#
172Hg8092171.99886(16)231(9) μsα168Pt0+
173Hg8093172.99714(22)#800(80) μsα169Pt(7/2−)
174Hg8094173.992871(21)2.0(4) msα170Pt0+
175Hg8095174.99144(9)10.2(3) msα171Pt(7/2−)
175mHg494(2) keV340(30) nsIT175Hg(13/2+)
176Hg8096175.987349(12)20.3(14) msα (90%)172Pt0+
β+ (10%)176Au
177Hg8097176.98628(9)117(7) msα173Pt7/2−
177mHg323.2(13) keV1.50(15) μsIT177Hg13/2+
178Hg8098177.982485(12)266.5(24) msα (89%)174Pt0+
β+ (11%)178Au
179Hg8099178.98182(3)1.05(3) sα (75%)175Pt7/2−
β+ (25%)179Au
β+, p (0.15%)178Pt
179mHg171.4(4) keV6.4(9) μsIT179Hg13/2+
180Hg80100179.978260(14)2.59(1) sβ+ (52%)180Au0+
α (48%)176Pt
181Hg80101180.977819(17)3.6(1) sβ+ (73%)181Au1/2−
α (27%)177Pt
β+, p (0.014%)180Pt
β+, α (9×10−6%)177Ir
181mHg210(50) keV480(20) μsIT181Hg13/2+
182Hg80102181.974689(11)10.83(6) sβ+ (86.2%)182Au0+
α (13.8%)178Pt
β+, p (<1×10−5%)181Pt
183Hg80103182.974445(8)9.4(7) sβ+ (88.3%)183Au1/2−
α (11.7%)179Pt
β+, p (2.6×10−4%)182Pt
183mHg204(14) keV>5# μs13/2+#
184Hg80104183.971718(10)30.87(26) sβ+ (98.89%)184Au0+
α (1.11%)180Pt
185Hg80105184.971891(15)49.1(10) sβ+ (94%)185Au1/2−
α (6%)181Pt
185mHg103.7(4) keV21.6(15) sIT (54%)185Hg13/2+
β+ (46%)185Au
α (0.03%)181Pt
186Hg80106185.969362(13)1.38(6) minβ+ (99.98%)186Au0+
α (0.016%)182Pt
186mHg2217.3(4) keV82(5) μsIT186Hg(8−)
187Hg80107186.969814(14)1.9(3) minβ+187Au3/2−
187mHg58(14) keV2.4(3) minβ+187Au13/2+
188Hg80108187.967581(7)3.25(15) minβ+188Au0+
α (3.7×10−5%)184Pt
188mHg2724.1(4) keV142(14) nsIT188Hg12+
189Hg80109188.96819(3)7.6(2) minβ+189Au3/2−
189mHg80(30) keV8.6(2) minβ+189Au13/2+
190Hg80110189.966322(17)20.0(5) minβ+190Au0+
191Hg80111190.967158(24)49(10) minβ+191Au3/2−
191mHg128(22) keV50.8(15) minβ+191Au13/2+
192Hg80112191.965634(17)4.85(20) hEC192Au0+
193Hg80113192.966653(17)3.80(15) hβ+193Au3/2−
193mHg140.76(5) keV11.8(2) hβ+ (92.8%)193Au13/2+
IT (7.2%)193Hg
194Hg80114193.965449(3)447(28) yEC194Au0+
195Hg80115194.966706(25)10.69(16) hβ+195Au1/2−
195mHg176.07(4) keV41.60(19) hIT (54.2%)195Hg13/2+
β+ (45.8%)195Au
196Hg80116195.965833(3)Observationally Stable150+0.0015(1)
197Hg80117196.967214(3)64.93(7) hEC197Au1/2−
197mHg298.93(8) keV23.82(4) hIT (94.68%)197Hg13/2+
EC (5.32%)197Au
198Hg80118197.9667692(5)Observationally Stable160+0.1004(3)
199Hg80119198.9682810(6)Observationally Stable171/2−0.1694(12)
199mHg532.48(10) keV42.67(9) minIT199Hg13/2+
200Hg80120199.9683269(6)Observationally Stable180+0.2314(9)
201Hg80121200.9703031(8)Observationally Stable193/2−0.1317(9)
201mHg766.22(15) keV94.0(20) μsIT201Hg13/2+
202Hg80122201.9706436(8)Observationally Stable200+0.2974(13)
203Hg80123202.9728724(18)46.610(10) dβ−203Tl5/2−
203m1Hg933.14(23) keV22.1(10) μsIT203Hg(13/2+)
203m2Hg8281.3(5) keV146(30) nsIT203Hg(53/2+)
204Hg80124203.9734940(5)Observationally Stable210+0.0682(4)
204mHg7226.08(17) keV~485 nsIT204Hg22+
205Hg80125204.976073(4)5.14(9) minβ−205Tl1/2−
205m1Hg1556.4(3) keV1.09(4) msIT205Hg13/2+
205m2Hg3316.6(8) keV5.89(18) μsIT205Hg(23/2−)
206Hg80126205.977514(22)8.32(7) minβ−206Tl0+Trace22
206m1Hg2102.4(3) keV2.088(17) μsIT206Hg5−
206m2Hg3722.3(10) keV106(3) nsIT206Hg(10+)
207Hg80127206.98230(3)2.9(2) minβ−207Tl9/2+
208Hg80128207.98576(3)135(10) sβ−208Tl0+
208mHg1338(24) keV99(14) nsIT208Hg(8+)
209Hg80129208.99076(16)#6.3(11) sβ−209Tl9/2+#
210Hg80130209.99431(22)#64(12) sβ− (97.8%)210Tl0+
β−, n (2.2%)209Tl
210m1Hg663(2) keV2.1(7) μsIT210Hg(3−)
210m2Hg1406(23) keV2(1) μsIT210Hg8+#
211Hg80131210.99958(22)#26.4(81) sβ− (93.7%)211Tl9/2+#
β−, n (6.3%)210Tl
212Hg80132212.00324(32)#30# s[>300 ns]0+
213Hg80133213.00880(32)#15# s[>300 ns]9/2+#
214Hg80134214.01264(43)#8# s[>300 ns]0+
215Hg80135215.01837(43)#600# ms[>300 ns]9/2+#
216Hg80136216.02246(43)#2# s[>300 ns]0+
This table header & footer:
  • view

References

  1. mHg – Excited nuclear isomer. /wiki/Nuclear_isomer

  2. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  3. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  4. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  5. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  6. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. Modes of decay: EC:Electron captureIT:Isomeric transition /wiki/Electron_capture

  9. Bold symbol as daughter – Daughter product is stable.

  10. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  11. ( ) spin value – Indicates spin with weak assignment arguments.

  12. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  15. Believed to undergo β+β+ decay to 196Pt with a half-life over 2.5×1018 years; also theorized to undergo α decay to 192Pt

  16. Believed to undergo α decay to 194Pt

  17. Believed to undergo α decay to 195Pt

  18. Believed to undergo α decay to 196Pt

  19. Believed to undergo α decay to 197Pt

  20. Believed to undergo α decay to 198Pt

  21. Believed to undergo β−β− decay to 204Pb

  22. Intermediate decay product of 238U /wiki/Decay_product