Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of silicon

Silicon (14Si) has 25 known isotopes, with mass numbers ranging from 22 to 46. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable. The longest-lived radioisotope is 32Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years (with decay energy 0.21 MeV), and it decays by beta emission to 32P (which has a 14.27-day half-life) and then to 32S. After 32Si, 31Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.

Related Image Collections Add Image
We don't have any YouTube videos related to Isotopes of silicon yet.
We don't have any PDF documents related to Isotopes of silicon yet.
We don't have any Books related to Isotopes of silicon yet.

List of isotopes

Nuclide2ZNIsotopic mass (Da)345Half-life67Decaymode89Daughterisotope10Spin andparity111213Natural abundance (mole fraction)
Excitation energyNormal proportion14Range of variation
22Si14822.03611(54)#28.7(11) msβ+, p (62%)21Mg0+
β+ (37%)22Al
β+, 2p (0.7%)20Na
23Si14923.02571(54)#42.3(4) msβ+, p (88%)22Mg3/2+#
β+ (8%)23Al
β+, 2p (3.6%)21Na
24Si141024.011535(21)143.2 (21) msβ+ (65.5%)24Al0+
β+, p (34.5%)23Mg
25Si141125.004109(11)220.6(10) msβ+ (65%)25Al5/2+
β+, p (35%)24Mg
26Si141225.99233382(12)2.2453(7) sβ+26Al0+
27Si141326.98670469(12)4.117(14) sβ+27Al5/2+
28Si141427.97692653442(55)Stable0+0.92223(19)0.92205–0.92241
29Si141528.97649466434(60)Stable1/2+0.04685(8)0.04678–0.04692
30Si141629.973770137(23)Stable0+0.03092(11)0.03082–0.03102
31Si141730.975363196(46)157.16(20) minβ−31P3/2+
32Si141831.97415154(32)157(7) yβ−32P0+tracecosmogenic
33Si141932.97797696(75)6.18(18) sβ−33P3/2+
34Si142033.97853805(86)2.77(20) sβ−34P0+
34mSi4256.1(4) keV<210 nsIT34Si(3−)
35Si142134.984550(38)780(120) msβ−35P7/2−#
β−, n?34P
36Si142235.986649(77)503(2) msβ− (88%)36P0+
β−, n (12%)35P
37Si142336.99295(12)141.0(35) msβ− (83%)37P(5/2−)
β−, n (17%)36P
β−, 2n?35P
38Si142437.99552(11)63(8) msβ− (75%)38P0+
β−, n (25%)37P
39Si142539.00249(15)41.2(41) msβ− (67%)39P(5/2−)
β−, n (33%)38P
β−, 2n?37P
40Si142640.00608(13)31.2(26) msβ− (62%)40P0+
β−, n (38%)39P
β−, 2n?38P
41Si142741.01417(32)#20.0(25) msβ−, n (>55%)40P7/2−#
β− (<45%)41P
β−, 2n?39P
42Si142842.01808(32)#15.5(4 (stat), 16 (sys)) ms15β− (51%)42P0+
β−, n (48%)41P
β−, 2n (1%)40P
43Si142943.02612(43)#13(4 (stat), 2 (sys)) ms16β−, n (52%)42P3/2−#
β− (27%)43P
β−, 2n (21%)41P
44Si143044.03147(54)#4# ms [>360 ns]β−?44P0+
β−, n?43P
β−, 2n?42P
45Si17143145.03982(64)#4# ms3/2−#
46Si181432
This table header & footer:
  • view

Silicon-28

Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of 29Si in a sample of silicon contributes to quantum decoherence.19 Extremely pure (>99.9998%) samples of 28Si can be produced through selective ionization and deposition of 28Si from silane gas.20 Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a 93.75 mm (3.691 in) sphere of the isotope and determining the exact number of atoms in the sample.2122

Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova.2324

Silicon-29

Silicon-29 is of note as the only stable silicon isotope with a nonzero nuclear spin (I = 1/2).25 As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon.26

Silicon-34

Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds.27 In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion.28 Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in 36S where it is almost full.2930 Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of 242Cm with a branching ratio of approximately 1×10−16.31

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  2. mSi – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: IT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Isomeric_transition

  10. Bold symbol as daughter – Daughter product is stable.

  11. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  12. ( ) spin value – Indicates spin with weak assignment arguments.

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  15. Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi:10.1103/PhysRevLett.129.212501. PMID 36461950. S2CID 253600995. https://doi.org/10.1103%2FPhysRevLett.129.212501

  16. Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi:10.1103/PhysRevLett.129.212501. PMID 36461950. S2CID 253600995. https://doi.org/10.1103%2FPhysRevLett.129.212501

  17. Yoshimoto, Masahiro; Suzuki, Hiroshi; Fukuda, Naoki; Takeda, Hiroyuki; Shimizu, Yohei; Yanagisawa, Yoshiyuki; Sato, Hiromi; Kusaka, Kensuke; Ohtake, Masao; Yoshida, Koichi; Michimasa, Shin’ichiro (2024). "Discovery of Neutron-Rich Silicon Isotopes 45,46Si". Progress of Theoretical and Experimental Physics. 2024 (10). Oxford University Press (OUP). doi:10.1093/ptep/ptae155. ISSN 2050-3911. https://doi.org/10.1093%2Fptep%2Fptae155

  18. Yoshimoto, Masahiro; Suzuki, Hiroshi; Fukuda, Naoki; Takeda, Hiroyuki; Shimizu, Yohei; Yanagisawa, Yoshiyuki; Sato, Hiromi; Kusaka, Kensuke; Ohtake, Masao; Yoshida, Koichi; Michimasa, Shin’ichiro (2024). "Discovery of Neutron-Rich Silicon Isotopes 45,46Si". Progress of Theoretical and Experimental Physics. 2024 (10). Oxford University Press (OUP). doi:10.1093/ptep/ptae155. ISSN 2050-3911. https://doi.org/10.1093%2Fptep%2Fptae155

  19. "Beyond Six Nines: Ultra-enriched Silicon Paves the Road to Quantum Computing". NIST. 2014-08-11. https://www.nist.gov/news-events/news/2014/08/beyond-six-nines-ultra-enriched-silicon-paves-road-quantum-computing

  20. Dwyer, K J; Pomeroy, J M; Simons, D S; Steffens, K L; Lau, J W (2014-08-30). "Enriching 28 Si beyond 99.9998 % for semiconductor quantum computing". Journal of Physics D: Applied Physics. 47 (34): 345105. doi:10.1088/0022-3727/47/34/345105. ISSN 0022-3727. https://iopscience.iop.org/article/10.1088/0022-3727/47/34/345105

  21. Powell, Devin (1 July 2008). "Roundest Objects in the World Created". New Scientist. Retrieved 16 June 2015. https://www.newscientist.com/article/dn14229-roundest-objects-in-the-world-created.html#.VOHyzfnRV_E

  22. Keats, Jonathon. "The Search for a More Perfect Kilogram". Wired. Vol. 19, no. 10. Retrieved 16 December 2023. https://www.wired.com/2011/09/ff-kilogram/

  23. Woosley, S.; Janka, T. (2006). "The physics of core collapse supernovae". Nature Physics. 1 (3): 147–154. arXiv:astro-ph/0601261. Bibcode:2005NatPh...1..147W. CiteSeerX 10.1.1.336.2176. doi:10.1038/nphys172. S2CID 118974639. /wiki/ArXiv_(identifier)

  24. Narlikar, Jayant V. (1995). From Black Clouds to Black Holes. World Scientific. p. 94. ISBN 978-9810220334. 978-9810220334

  25. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 978-0-08-037941-8

  26. Watkins, G. D.; Corbett, J. W. (1961-02-15). "Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si- A Center". Physical Review. 121 (4): 1001–1014. Bibcode:1961PhRv..121.1001W. doi:10.1103/PhysRev.121.1001. ISSN 0031-899X. https://link.aps.org/doi/10.1103/PhysRev.121.1001

  27. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  28. Lică, R.; Rotaru, F.; Borge, M. J. G.; Grévy, S.; Negoiţă, F.; Poves, A.; Sorlin, O.; Andreyev, A. N.; Borcea, R.; Costache, C.; De Witte, H.; Fraile, L. M.; Greenlees, P. T.; Huyse, M.; Ionescu, A.; Kisyov, S.; Konki, J.; Lazarus, I.; Madurga, M.; Mărginean, N.; Mărginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Nowacki, F.; Page, R. D.; Pakarinen, J.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Şerban, A.; Sotty, C. O.; Stan, L.; Stănoiu, M.; Tengblad, O.; Turturică, A.; Van Duppen, P.; Warr, N.; Dessagne, Ph.; Stora, T.; Borcea, C.; Călinescu, S.; Daugas, J. M.; Filipescu, D.; Kuti, I.; Franchoo, S.; Gheorghe, I.; Morfouace, P.; Morel, P.; Mrazek, J.; Pietreanu, D.; Sohler, D.; Stefan, I.; Şuvăilă, R.; Toma, S.; Ur, C. A. (11 September 2019). "Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34". Physical Review C. 100 (3): 034306. arXiv:1908.11626. doi:10.1103/PhysRevC.100.034306. https://doi.org/10.1103%2FPhysRevC.100.034306

  29. "Physicists find atomic nucleus with a 'bubble' in the middle". 24 October 2016. Retrieved 26 December 2023. https://www.sciencenews.org/article/physicists-find-atomic-nucleus-bubble-middle

  30. Mutschler, A.; Lemasson, A.; Sorlin, O.; Bazin, D.; Borcea, C.; Borcea, R.; Dombrádi, Z.; Ebran, J.-P.; Gade, A.; Iwasaki, H.; Khan, E.; Lepailleur, A.; Recchia, F.; Roger, T.; Rotaru, F.; Sohler, D.; Stanoiu, M.; Stroberg, S. R.; Tostevin, J. A.; Vandebrouck, M.; Weisshaar, D.; Wimmer, K. (February 2017). "A proton density bubble in the doubly magic 34Si nucleus". Nature Physics. 13 (2): 152–156. arXiv:1707.03583. doi:10.1038/nphys3916. /wiki/ArXiv_(identifier)

  31. Bonetti, R.; Guglielmetti, A. (2007). "Cluster radioactivity: an overview after twenty years" (PDF). Romanian Reports in Physics. 59: 301–310. Archived from the original (PDF) on 19 September 2016. https://web.archive.org/web/20160919014152/http://www.rrp.infim.ro/2007_59_2/10_bonetti.pdf