Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of silver

Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with all stable istopes having nuclear spins of 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra.

40 radioisotopes have been characterized with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.43 days, and 112Ag with a half-life of 3.13 hours.

All of the remaining radioactive isotopes have half-lives that are less than an hour, and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states, with the most stable being 108mAg (half-life 439 years), 110mAg (half-life 249.86 days) and 106mAg (half-life 8.28 days).

Isotopes of silver range in atomic weight from 92Ag to 132Ag. The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.

The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.

The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus 107Ag correlations observed in bodies, which have clearly been melted since the accretion of the Solar System, must reflect the presence of live short-lived nuclides in the early Solar System.

We don't have any images related to Isotopes of silver yet.
We don't have any YouTube videos related to Isotopes of silver yet.
We don't have any PDF documents related to Isotopes of silver yet.
We don't have any Books related to Isotopes of silver yet.
We don't have any archived web articles related to Isotopes of silver yet.

List of isotopes

Nuclide2ZNIsotopic mass (Da)345Half-life67Decaymode89Daughterisotope1011Spin andparity121314Natural abundance (mole fraction)
Excitation energy15Normal proportion16Range of variation
92Ag474591.95971(43)#1# ms[>400 ns]β+?92Pd
p?91Pd
93Ag474692.95019(43)#228(16) nsβ+?93Pd9/2+#
p?92Pd
β+, p?92Rh
94Ag474793.94374(43)#27(2) msβ+ (>99.8%)94Pd0+#
β+, p (<0.2%)93Rh
94m1Ag1350(400)# keV470(10) msβ+ (83%)94Pd(7+)
β+, p (17%)93Rh
94m2Ag6500(550)# keV400(40) msβ+ (~68.4%)94Pd(21+)
β+, p (~27%)93Rh
p (4.1%)93Pd
2p (0.5%)92Rh
95Ag474894.93569(43)#1.78(6) sβ+ (97.7%)95Pd(9/2+)
β+, p (2.3%)94Rh
95m1Ag344.2(3) keV<0.5 sIT95Ag(1/2−)
95m2Ag2531.3(15) keV<16 msIT95Ag(23/2+)
95m3Ag4860.0(15) keV<40 msIT95Ag(37/2+)
96Ag474995.93074(10)4.45(3) sβ+ (95.8%)96Pd(8)+
β+, p (4.2%)95Rh
96m1Ag170(50)# keV6.9(5) sβ+ (85.1%)96Pd(2+)
β+, p (14.9%)95Rh
96m2Ag2461.4(3) keV103.2(45) μsIT96Ag(13−)
96m3Ag2686.7(4) keV1.561(16) μsIT96Ag(15+)
96m4Ag6951.8(14) keV132(17) nsIT96Ag(19+)
97Ag475096.923881(13)25.5(3) sβ+97Pd(9/2)+
97mAg620(40) keV100# msIT?97Ag1/2−#
98Ag475197.92156(4)47.5(3) sβ+98Pd(6)+
β+, p (.0012%)97Rh
98mAg107.28(10) keV161(7) nsIT98Ag(4+)
99Ag475298.917646(7)2.07(5) minβ+99Pd(9/2)+
99mAg506.2(4) keV10.5(5) sIT99Ag(1/2−)
100Ag475399.916115(5)2.01(9) minβ+100Pd(5)+
100mAg15.52(16) keV2.24(13) minIT?100Ag(2)+
β+?100Pd
101Ag4754100.912684(5)11.1(3) minβ+101Pd9/2+
101mAg274.1(3) keV3.10(10) sIT101Ag(1/2)−
102Ag4755101.911705(9)12.9(3) minβ+102Pd5+
102mAg9.40(7) keV7.7(5) minβ+ (51%)102Pd2+
IT (49%)102Ag
103Ag4756102.908961(4)65.7(7) minβ+103Pd7/2+
103mAg134.45(4) keV5.7(3) sIT103Ag1/2−
104Ag4757103.908624(5)69.2(10) minβ+104Pd5+
104mAg6.90(22) keV33.5(20) minβ+ (>99.93%)104Pd2+
IT (<0.07%)104Ag
105Ag4758104.906526(5)41.29(7) dβ+105Pd1/2−
105mAg25.468(16) keV7.23(16) minIT (99.66%)105Ag7/2+
β+ (.34%)105Pd
106Ag4759105.906663(3)23.96(4) minβ+106Pd1+
β−?106Cd
106mAg89.66(7) keV8.28(2) dβ+106Pd6+
IT?106Ag
107Ag184760106.9050915(26)Stable1/2−0.51839(8)
107mAg93.125(19) keV44.3(2) sIT107Ag7/2+
108Ag194761107.9059502(26)2.382(11) minβ− (97.15%)108Cd1+
EC (2.57%)108Pd
β+ (0.283%)
108mAg20109.466(7) keV439(9) yEC (91.3%)108Pd6+
IT (8.96%)108Ag
109Ag214762108.9047558(14)Stable1/2−0.48161(8)
109mAg88.0337(10) keV39.79(21) sIT109Ag7/2+
110Ag4763109.9061107(14)24.56(11) sβ− (99.70%)110Cd1+
EC (0.30%)110Pd
110m1Ag1.112(16) keV660(40) nsIT110Ag2−
110m2Ag117.59(5) keV249.863(24) dβ− (98.67%)110Cd6+
IT (1.33%)110Ag
111Ag224764110.9052968(16)7.433(10) dβ−111Cd1/2−
111mAg59.82(4) keV64.8(8) sIT (99.3%)111Ag7/2+
β− (0.7%)111Cd
112Ag4765111.9070485(26)3.130(8) hβ−112Cd2(−)
113Ag4766112.906573(18)5.37(5) hβ−113mCd1/2−
113mAg43.50(10) keV68.7(16) sIT (64%)113Ag7/2+
β− (36%)113Cd
114Ag4767113.908823(5)4.6(1) sβ−114Cd1+
114mAg198.9(10) keV1.50(5) msIT114Ag(6+)
115Ag4768114.908767(20)20.0(5) minβ−115mCd1/2−
115mAg41.16(10) keV18.0(7) sβ− (79.0%)115Cd7/2+
IT (21.0%)115Ag
116Ag4769115.911387(4)3.83(8) minβ−116Cd(0−)
116m1Ag47.90(10) keV20(1) sβ− (93%)116Cd(3+)
IT (7%)116Ag
116m2Ag129.80(22) keV9.3(3) sβ− (92%)116Cd(6−)
IT (8%)116Ag
117Ag4770116.911774(15)73.6(14) sβ−117mCd1/2−#
117mAg28.6(2) keV5.34(5) sβ− (94.0%)117mCd7/2+#
IT (6.0%)117Ag
118Ag4771117.9145955(27)3.76(15) sβ−118Cd(2−)
118m1Ag45.79(9) keV~0.1 μsIT118Ag(1,2)−
118m2Ag127.63(10) keV2.0(2) sβ− (59%)118Cd(5+)
IT (41%)118Ag
118m3Ag279.37(20) keV~0.1 μsIT118Ag(3+)
119Ag4772118.915570(16)2.1(1) sβ−119Cd(7/2+)
119mAg33.5(3) keV236.0(5) sβ−119Cd(1/2−)
120Ag4773119.918785(5)1.52(7) sβ−120Cd4(+)
β−, n (<.003%)119Cd
120m1Ag240(50)# keV940(100) msβ−?120Cd(0−, 1−)
IT?120Ag
β−, n?119Cd
120m2Ag203.2(2) keV384(22) msIT (68%)120Sn7(−)
β− (32%)120Cd
β−, n?119Cd
121Ag4774120.920125(13)777(10) msβ− (99.92%)121Cd7/2+#
β−, n (0.080%)120Cd
122Ag254775121.9235420(56)550(50) msβ−122Cd(1−)
β−, n?121Cd
122m1Ag26303.7(50) keV200(50) msβ−122Cd(9−)
β−, n?121Cd
IT?122Ag
122m2Ag171(50)# keV6.3(1) μsIT122Ag(1+)
123Ag4776122.92532(4)294(5) msβ− (99.44%)123Cd(7/2+)
β−, n (0.56%)122Cd
123m1Ag59.5(5) keV100# msβ−123Cd(1/2−)
β−, n?122Cd
123m2Ag1450(14)# keV202(20) nsIT123Ag
123m3Ag1472.8(8) keV393(16) nsIT123Ag(17/2−)
124Ag4777123.92890(27)#177.9(26) msβ− (98.7%)124Cd(2−)
β−, n (1.3%)123Cd
124m1Ag2750(50)# keV144(20) msβ−124Cd9−#
β−, n?123Cd
124m2Ag155.6(5) keV140(50) nsIT124Ag(1+)
124m3Ag231.1(7) keV1.48(15) μsIT124Ag(1−)
125Ag4778124.93074(47)160(5) msβ− (88.2%)125Cd(9/2+)
β−, n (11.8%)124Cd
125m1Ag97.1(5) keV50# msβ−?125Cd(1/2−)
IT?125Ag
β−, n?124Cd
125m2Ag1501.2(6) keV491(20) nsIT125Ag(17/2−)
126Ag4779125.93481(22)#52(10) msβ− (86.3%)126Cd3+#
β−, n (13.7%)125Cd
126m1Ag100(100)# keV108.4(24) msβ−126Cd9−#
IT?126Ag
β−, n?125Cd
126m2Ag254.8(5) keV27(6) μsIT126Ag1−#
127Ag4780126.93704(22)#89(2) msβ− (85.4%)127Cd(9/2+)
β−, n (14.6%)126Cd
127mAg1938(17) keV67.5(9) msβ− (91.2%)127Cd(27/2+)
IT (8.8%)127Ag
128Ag4781127.94127(32)#60(3) msβ− (80%)128Cd3+#
β−, n (20%)127Cd
β−, 2n?126Cd
129Ag4782128.94432(43)#49.9(35) msβ− (>80%)129Cd9/2+#
β−, n (<20%)128Cd
130Ag4783129.95073(46)#40.6(45) msβ−130Cd1−#
β−, n?129Cd
β−, 2n?128Cd
131Ag4784130.95625(54)#35(8) msβ− (90%)131Cd9/2+#
β−, 2n (10%)129Cd
β−, n?130Cd
132Ag4785131.96307(54)#30(14) msβ−132Cd6−#
β−, n?131Cd
β−, 2n?130Cd
This table header & footer:
  • view

References

  1. "(Ag) Silver NMR". https://chem.ch.huji.ac.il/nmr/techniques/1d/row5/ag.html

  2. mAg – Excited nuclear isomer. /wiki/Nuclear_isomer

  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  4. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  5. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  10. Bold italics symbol as daughter – Daughter product is nearly stable.

  11. Bold symbol as daughter – Daughter product is stable.

  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  13. ( ) spin value – Indicates spin with weak assignment arguments.

  14. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  15. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  16. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  17. Order of ground state and isomer is uncertain.

  18. Used to date certain events in the early history of the Solar System

  19. Blachot, Jean (October 2000). "Nuclear Data Sheets for A = 108". Nuclear Data Sheets. 91 (2): 135–296. doi:10.1006/ndsh.2000.0017. https://www.nndc.bnl.gov/nudat3/decaysearchdirect.jsp?nuc=108Ag&unc=NDS

  20. Blachot, Jean (October 2000). "Nuclear Data Sheets for A = 108". Nuclear Data Sheets. 91 (2): 135–296. doi:10.1006/ndsh.2000.0017. https://www.nndc.bnl.gov/nudat3/decaysearchdirect.jsp?nuc=108Ag&unc=NDS

  21. Fission product /wiki/Fission_product

  22. Fission product /wiki/Fission_product

  23. Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316. /wiki/Doi_(identifier)

  24. Order of ground state and isomer is uncertain.

  25. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  26. Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710. https://journals.aps.org/prc/accepted/fe077P3cDac1f601a8c16c34b19fb124fc3509f19

  27. Order of ground state and isomer is uncertain.