Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Jacket matrix
Square matrix that is a generalization of the Hadamard matrix

In mathematics, a jacket matrix is a square symmetric matrix A = ( a i j ) {\displaystyle A=(a_{ij})} of order n if its entries are non-zero and real, complex, or from a finite field, and

  A B = B A = I n {\displaystyle \ AB=BA=I_{n}}

where In is the identity matrix, and

  B = 1 n ( a i j − 1 ) T . {\displaystyle \ B={1 \over n}(a_{ij}^{-1})^{T}.}

where T denotes the transpose of the matrix.

In other words, the inverse of a jacket matrix is determined by its element-wise or block-wise inverse. The definition above may also be expressed as:

∀ u , v ∈ { 1 , 2 , … , n } :   a i u , a i v ≠ 0 ,         ∑ i = 1 n a i u − 1 a i v = { n , u = v 0 , u ≠ v {\displaystyle \forall u,v\in \{1,2,\dots ,n\}:~a_{iu},a_{iv}\neq 0,~~~~\sum _{i=1}^{n}a_{iu}^{-1}\,a_{iv}={\begin{cases}n,&u=v\\0,&u\neq v\end{cases}}}

The jacket matrix is a generalization of the Hadamard matrix; it is a diagonal block-wise inverse matrix.

We don't have any images related to Jacket matrix yet.
We don't have any YouTube videos related to Jacket matrix yet.
We don't have any PDF documents related to Jacket matrix yet.
We don't have any Books related to Jacket matrix yet.
We don't have any archived web articles related to Jacket matrix yet.

Motivation

n.... −2, −1, 0 1, 2,.....logarithm
2n....   1 4 , 1 2 , {\displaystyle \ {1 \over 4},{1 \over 2},} 1, 2, 4, ...series

As shown in the table, i.e. in the series, for example with n=2, forward: 2 2 = 4 {\displaystyle 2^{2}=4} , inverse : ( 2 2 ) − 1 = 1 4 {\displaystyle (2^{2})^{-1}={1 \over 4}} , then, 4 ∗ 1 4 = 1 {\displaystyle 4*{1 \over 4}=1} . That is, there exists an element-wise inverse.

Example 1.

A = [ 1 1 1 1 1 − 2 2 − 1 1 2 − 2 − 1 1 − 1 − 1 1 ] , {\displaystyle A=\left[{\begin{array}{rrrr}1&1&1&1\\1&-2&2&-1\\1&2&-2&-1\\1&-1&-1&1\\\end{array}}\right],} : B = 1 4 [ 1 1 1 1 1 − 1 2 1 2 − 1 1 1 2 − 1 2 − 1 1 − 1 − 1 1 ] . {\displaystyle B={1 \over 4}\left[{\begin{array}{rrrr}1&1&1&1\\[6pt]1&-{1 \over 2}&{1 \over 2}&-1\\[6pt]1&{1 \over 2}&-{1 \over 2}&-1\\[6pt]1&-1&-1&1\\[6pt]\end{array}}\right].}

or more general

A = [ a b b a b − c c − b b c − c − b a − b − b a ] , {\displaystyle A=\left[{\begin{array}{rrrr}a&b&b&a\\b&-c&c&-b\\b&c&-c&-b\\a&-b&-b&a\end{array}}\right],} : B = 1 4 [ 1 a 1 b 1 b 1 a 1 b − 1 c 1 c − 1 b 1 b 1 c − 1 c − 1 b 1 a − 1 b − 1 b 1 a ] , {\displaystyle B={1 \over 4}\left[{\begin{array}{rrrr}{1 \over a}&{1 \over b}&{1 \over b}&{1 \over a}\\[6pt]{1 \over b}&-{1 \over c}&{1 \over c}&-{1 \over b}\\[6pt]{1 \over b}&{1 \over c}&-{1 \over c}&-{1 \over b}\\[6pt]{1 \over a}&-{1 \over b}&-{1 \over b}&{1 \over a}\end{array}}\right],}

Example 2.

For m x m matrices, A j , {\displaystyle \mathbf {A_{j}} ,}

A j = d i a g ( A 1 , A 2 , . . A n ) {\displaystyle \mathbf {A_{j}} =\mathrm {diag} (A_{1},A_{2},..A_{n})} denotes an mn x mn block diagonal Jacket matrix.

J 4 = [ I 2 0 0 0 0 cos ⁡ θ − sin ⁡ θ 0 0 sin ⁡ θ cos ⁡ θ 0 0 0 0 I 2 ] , {\displaystyle J_{4}=\left[{\begin{array}{rrrr}I_{2}&0&0&0\\0&\cos \theta &-\sin \theta &0\\0&\sin \theta &\cos \theta &0\\0&0&0&I_{2}\end{array}}\right],}   J 4 T J 4 = J 4 J 4 T = I 4 . {\displaystyle \ J_{4}^{T}J_{4}=J_{4}J_{4}^{T}=I_{4}.}

Example 3.

Euler's formula:

e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0} , e i π = cos ⁡ π + i sin ⁡ π = − 1 {\displaystyle e^{i\pi }=\cos {\pi }+i\sin {\pi }=-1} and e − i π = cos ⁡ π − i sin ⁡ π = − 1 {\displaystyle e^{-i\pi }=\cos {\pi }-i\sin {\pi }=-1} .

Therefore,

e i π e − i π = ( − 1 ) ( 1 − 1 ) = 1 {\displaystyle e^{i\pi }e^{-i\pi }=(-1)({\frac {1}{-1}})=1} .

Also,

y = e x {\displaystyle y=e^{x}} d y d x = e x {\displaystyle {\frac {dy}{dx}}=e^{x}} , d y d x d x d y = e x 1 e x = 1 {\displaystyle {\frac {dy}{dx}}{\frac {dx}{dy}}=e^{x}{\frac {1}{e^{x}}}=1} .

Finally,

A·B = B·A = I

Example 4.

Consider [ A ] N {\displaystyle [\mathbf {A} ]_{N}} be 2x2 block matrices of order N = 2 p {\displaystyle N=2p} [ A ] N = [ A 0 A 1 A 1 A 0 ] , {\displaystyle [\mathbf {A} ]_{N}=\left[{\begin{array}{rrrr}\mathbf {A} _{0}&\mathbf {A} _{1}\\\mathbf {A} _{1}&\mathbf {A} _{0}\\\end{array}}\right],} .

If [ A 0 ] p {\displaystyle [\mathbf {A} _{0}]_{p}} and [ A 1 ] p {\displaystyle [\mathbf {A} _{1}]_{p}} are pxp Jacket matrix, then [ A ] N {\displaystyle [A]_{N}} is a block circulant matrix if and only if A 0 A 1 r t + A 1 r t A 0 {\displaystyle \mathbf {A} _{0}\mathbf {A} _{1}^{rt}+\mathbf {A} _{1}^{rt}\mathbf {A} _{0}} , where rt denotes the reciprocal transpose.

Example 5.

Let A 0 = [ − 1 1 1 1 ] , {\displaystyle \mathbf {A} _{0}=\left[{\begin{array}{rrrr}-1&1\\1&1\\\end{array}}\right],} and A 1 = [ − 1 − 1 − 1 1 ] , {\displaystyle \mathbf {A} _{1}=\left[{\begin{array}{rrrr}-1&-1\\-1&1\\\end{array}}\right],} , then the matrix [ A ] N {\displaystyle [\mathbf {A} ]_{N}} is given by

[ A ] 4 = [ A 0 A 1 A 0 A 1 ] = [ − 1 1 − 1 − 1 1 1 − 1 1 − 1 1 − 1 − 1 1 1 − 1 1 ] , {\displaystyle [\mathbf {A} ]_{4}=\left[{\begin{array}{rrrr}\mathbf {A} _{0}&\mathbf {A} _{1}\\\mathbf {A} _{0}&\mathbf {A} _{1}\\\end{array}}\right]=\left[{\begin{array}{rrrr}-1&1&-1&-1\\1&1&-1&1\\-1&1&-1&-1\\1&1&-1&1\\\end{array}}\right],} , [ A ] 4 {\displaystyle [\mathbf {A} ]_{4}} ⇒ [ U C A G ] T ⊗ [ U C A G ] ⊗ [ U C A G ] T , {\displaystyle \left[{\begin{array}{rrrr}U&C&A&G\\\end{array}}\right]^{T}\otimes \left[{\begin{array}{rrrr}U&C&A&G\\\end{array}}\right]\otimes \left[{\begin{array}{rrrr}U&C&A&G\\\end{array}}\right]^{T},}

where U, C, A, G denotes the amount of the DNA nucleobases and the matrix [ A ] 4 {\displaystyle [\mathbf {A} ]_{4}} is the block circulant Jacket matrix which leads to the principle of the Antagonism with Nirenberg Genetic Code matrix.

[1] Moon Ho Lee, "The Center Weighted Hadamard Transform", IEEE Transactions on Circuits Syst. Vol. 36, No. 9, PP. 1247–1249, Sept. 1989.

[2] Kathy Horadam, Hadamard Matrices and Their Applications, Princeton University Press, UK, Chapter 4.5.1: The jacket matrix construction, PP. 85–91, 2007.

[3] Moon Ho Lee, Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing, LAP LAMBERT Publishing, Germany, Nov. 2012.

[4] Moon Ho Lee, et. al., "MIMO Communication Method and System using the Block Circulant Jacket Matrix," US patent, no. US 009356671B1, May, 2016.

[5] S. K. Lee and M. H. Lee, “The COVID-19 DNA-RNA Genetic Code Analysis Using Information Theory of Double Stochastic Matrix,” IntechOpen, Book Chapter, April 17, 2022. [Available in Online: https://www.intechopen.com/chapters/81329].