Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Jacobi transform
Integral transformation using Jacobi polynomials as kernels

In mathematics, Jacobi transform is an integral transform named after the mathematician Carl Gustav Jacob Jacobi, which uses Jacobi polynomials P n α , β ( x ) {\displaystyle P_{n}^{\alpha ,\beta }(x)} as kernels of the transform .

The Jacobi transform of a function F ( x ) {\displaystyle F(x)} is

J { F ( x ) } = f α , β ( n ) = ∫ − 1 1 ( 1 − x ) α   ( 1 + x ) β   P n α , β ( x )   F ( x )   d x {\displaystyle J\{F(x)\}=f^{\alpha ,\beta }(n)=\int _{-1}^{1}(1-x)^{\alpha }\ (1+x)^{\beta }\ P_{n}^{\alpha ,\beta }(x)\ F(x)\ dx}

The inverse Jacobi transform is given by

J − 1 { f α , β ( n ) } = F ( x ) = ∑ n = 0 ∞ 1 δ n f α , β ( n ) P n α , β ( x ) , where δ n = 2 α + β + 1 Γ ( n + α + 1 ) Γ ( n + β + 1 ) n ! ( α + β + 2 n + 1 ) Γ ( n + α + β + 1 ) {\displaystyle J^{-1}\{f^{\alpha ,\beta }(n)\}=F(x)=\sum _{n=0}^{\infty }{\frac {1}{\delta _{n}}}f^{\alpha ,\beta }(n)P_{n}^{\alpha ,\beta }(x),\quad {\text{where}}\quad \delta _{n}={\frac {2^{\alpha +\beta +1}\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{n!(\alpha +\beta +2n+1)\Gamma (n+\alpha +\beta +1)}}}
We don't have any images related to Jacobi transform yet.
We don't have any YouTube videos related to Jacobi transform yet.
We don't have any PDF documents related to Jacobi transform yet.
We don't have any Books related to Jacobi transform yet.
We don't have any archived web articles related to Jacobi transform yet.

Some Jacobi transform pairs

Some Jacobi transform pairs
F ( x ) {\displaystyle F(x)\,} f α , β ( n ) {\displaystyle f^{\alpha ,\beta }(n)\,}
x m ,   m < n {\displaystyle x^{m},\ m<n\,} 0 {\displaystyle 0}
x n {\displaystyle x^{n}\,} n ! ( α + β + 2 n + 1 ) δ n {\displaystyle n!(\alpha +\beta +2n+1)\delta _{n}}
P m α , β ( x ) {\displaystyle P_{m}^{\alpha ,\beta }(x)\,} δ n δ m , n {\displaystyle \delta _{n}\delta _{m,n}}
( 1 + x ) a − β {\displaystyle (1+x)^{a-\beta }\,} ( n + α n ) 2 α + a + 1 Γ ( a + 1 ) Γ ( α + 1 ) Γ ( a − β + 1 ) Γ ( α + a + n + 2 ) Γ ( a − β + n + 1 ) {\displaystyle {\binom {n+\alpha }{n}}2^{\alpha +a+1}{\frac {\Gamma (a+1)\Gamma (\alpha +1)\Gamma (a-\beta +1)}{\Gamma (\alpha +a+n+2)\Gamma (a-\beta +n+1)}}}
( 1 − x ) σ − α ,   ℜ σ > − 1 {\displaystyle (1-x)^{\sigma -\alpha },\ \Re \sigma >-1\,} 2 σ + β + 1 n ! Γ ( α − σ ) Γ ( σ + 1 ) Γ ( n + β + 1 ) Γ ( α − σ + n ) Γ ( β + σ + n + 2 ) {\displaystyle {\frac {2^{\sigma +\beta +1}}{n!\Gamma (\alpha -\sigma )}}{\frac {\Gamma (\sigma +1)\Gamma (n+\beta +1)\Gamma (\alpha -\sigma +n)}{\Gamma (\beta +\sigma +n+2)}}}
( 1 − x ) σ − β P m α , σ ( x ) ,   ℜ σ > − 1 {\displaystyle (1-x)^{\sigma -\beta }P_{m}^{\alpha ,\sigma }(x),\ \Re \sigma >-1\,} 2 α + σ + 1 m ! ( n − m ) ! Γ ( n + α + 1 ) Γ ( α + β + m + n + 1 ) Γ ( σ + m + 1 ) Γ ( α − β + 1 ) Γ ( α + β + n + 1 ) Γ ( α + σ + m + n + 2 ) Γ ( α − β + m + 1 ) {\displaystyle {\frac {2^{\alpha +\sigma +1}}{m!(n-m)!}}{\frac {\Gamma (n+\alpha +1)\Gamma (\alpha +\beta +m+n+1)\Gamma (\sigma +m+1)\Gamma (\alpha -\beta +1)}{\Gamma (\alpha +\beta +n+1)\Gamma (\alpha +\sigma +m+n+2)\Gamma (\alpha -\beta +m+1)}}}
Some more Jacobi transform pairs
F ( x ) {\displaystyle F(x)\,} f α , β ( n ) {\displaystyle f^{\alpha ,\beta }(n)\,}
2 α + β Q − 1 ( 1 − z + Q ) − α ( 1 + z + Q ) − β ,   Q = ( 1 − 2 x z + z 2 ) 1 / 2 ,   | z | < 1 {\displaystyle 2^{\alpha +\beta }Q^{-1}(1-z+Q)^{-\alpha }(1+z+Q)^{-\beta },\ Q=(1-2xz+z^{2})^{1/2},\ |z|<1\,} ∑ n = 0 ∞ δ n z n {\displaystyle \sum _{n=0}^{\infty }\delta _{n}z^{n}}
( 1 − x ) − α ( 1 + x ) − β d d x [ ( 1 − x ) α + 1 ( 1 + x ) β + 1 d d x ] F ( x ) {\displaystyle (1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]F(x)\,} − n ( n + α + β + 1 ) f α , β ( n ) {\displaystyle -n(n+\alpha +\beta +1)f^{\alpha ,\beta }(n)}
{ ( 1 − x ) − α ( 1 + x ) − β d d x [ ( 1 − x ) α + 1 ( 1 + x ) β + 1 d d x ] } k F ( x ) {\displaystyle \left\{(1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]\right\}^{k}F(x)\,} ( − 1 ) k n k ( n + α + β + 1 ) k f α , β ( n ) {\displaystyle (-1)^{k}n^{k}(n+\alpha +\beta +1)^{k}f^{\alpha ,\beta }(n)}

References

  1. Debnath, L. "On Jacobi Transform." Bull. Cal. Math. Soc 55.3 (1963): 113-120.

  2. Debnath, L. "SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY JACOBI TRANSFORM." BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY 59.3-4 (1967): 155.

  3. Scott, E. J. "Jacobi transforms." (1953).

  4. Shen, Jie; Wang, Yingwei; Xia, Jianlin (2019). "Fast structured Jacobi-Jacobi transforms". Math. Comp. 88 (318): 1743–1772. doi:10.1090/mcom/3377. https://doi.org/10.1090%2Fmcom%2F3377

  5. Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.