Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
LCD classification

There are various classifications of the electro-optical modes of liquid crystal displays (LCDs).

We don't have any images related to LCD classification yet.
We don't have any YouTube videos related to LCD classification yet.
We don't have any PDF documents related to LCD classification yet.
We don't have any Books related to LCD classification yet.
We don't have any archived web articles related to LCD classification yet.

LCD operation in a nutshell

The operation of TN, VA and IPS-LCDs can be summarized as follows:

  • a well aligned LC configuration is deformed by an applied electric field,
  • this deformation changes the orientation of the local LC optical axis with respect to the direction of light propagation through the LC layer,
  • this change of orientation changes the polarization state of the light propagating through the LC layer,
  • this change of the polarization state is converted into a change of intensity by dichroic absorption, usually by external dichroic polarizers.

Activation

Liquid crystals can be aligned by both magnetic and electric fields. The strength of the required magnetic field is too high to be feasible for display applications.

One electro-optical effect with LCs requires a current through the LC-cell; all other practiced electro-optical effects only require an electric field (without current) for alignment of the LC.

Electro-optical effects in Liquid Crystals

LCs can be aligned by electric and magnetic fields

electric field effectselectro-hydrodynamic effects
the electrical field aligns the liquid crystalno current is necessary (very low power required for operation).current induced domain formation and scatteringrequires current for activation.
twisted nematic field effectdynamic scattering mode, DMS
Visual information can be generated by the processes of
  • absorption (either by dichroic dyes in the LC or by external dichroic polarizers),
  • scattering,
  • index matching (e.g. holographic PDLCs).

Absorption Effects

The state of polarization of the light traveling through the LC layer cannot be perceived by human observers, it must be converted into intensity (e.g. luminance) in order to become perceivable. This is achieved with absorption by dichroic dyes and dichroic polarizers.

Absorption Effects
internal absorption(dichroic dyes dissolved in LC), guest-host LCDsexternal dichroic polarizers
non-twisted configurations with dichroic dyes 1electrically controlled birefringence, ECB
twisted configurations with dichroic dyestwisted nematic field-effect,2 TN
supertwisted nematic effects, STN, the total twist is > 90°

SBE (supertwisted birefringence effect) 3DSTN: double layer STN effectFSTN: foil-compensated supertwisted nematic effect (foil = retarder sheet)

in-plane switching effects, IPS 4fringe-field switching effect, FFS
vertically aligned effects, VA 5multi-domain vertical alignment, MVA 6patterned vertical alignment, PVA 7
PI-cell 8 (aka OCB-cell)OCB: optically compensated bend-mode
cholesteric-nematic phase-change with dichroic dyes 9

Polymer Dispersed Liquid Crystals

Liquid crystals with low molecular weight can be mixed with high molecular weight polymers, followed by phase-separation to form a kind of spongy matrix filled with LC droplets. An external electric field can align the LC to match its index with that of the polymer matrix, switching that cell from a milky (scattering) state to a clear transparent state. When dichroic dyes are dissolved in the LC an electric field can switch the PDLC from an absorbing state to a fairly transparent state.

When the amount of polymer is small compared to that of the LC there will be no separation of both components, but the polymer forms an anisotropic fiber-like network within the LC that stabilizes the state in which it has been formed. In such a way, certain physical properties (e.g. elasticities, viscosities, and thus threshold voltages and response times, respectively) can be controlled.

Polymer Dispersed Liquid CrystalsPDLCs
  • absorptive dye-doped PDLCs
  • scattering PDLCs
  • holographic PCLCs
  • polymer stabilized LCDs

Bistable LCDs

For some applications bistability of electro-optical effects is highly advantageous, since the optical response (visual information) is maintained even after removal of the electrical activation, thus saving battery charge. These effects are beneficial when the displayed visual information is changed only in extended intervals (e.g. electronic paper, electronic price tags, etc.).

Bistable LCDs
ferroelectric LCscholesteric LCsnematic LCs
bistable ferroelectric LCDsbistable cholesteric phase-change LCDsbistable nematic displays
  • twisted-untwisted bistabilities(180°/360° twist) 10
  • bistable twisted nematic effects, BTN
  • zenithal bistabilities 11
  • azimuthal bistabilities

Reduction of Variations with Viewing Direction in LCDs

With the direction of light propagation in the LC layer also the state of polarization of the light changes, and, as a consequence, the intensity and the spectral distribution of transmitted light changes too. In order to reduce such unwanted variations to a minimum, two approaches are used in actual LC displays: multi-domain approaches and application of external birefringent layers (retarder sheets).

Reduction of Variations with Viewing Direction in LCDs
multidomain approaches(birefringent) retarder sheet compensation
visual averaging of microscopic regions withdifferent viewing-direction propertiescorrection of unwanted effects in LC by external birefringent (polymeric) layers.

Literature

  • Pochi Yeh, Claire Gu, Optics of Liquid Crystal Displays, John Wiley & Sons, 1999
  • D.K. Yang, S.T. Wu, Fundamentals of Liquid Crystal Devices, Wiley SID Series in Display Technology, 2006

References

  1. Heilmeier, G. H.; Zanoni, L. A. (1968). "GUEST‐HOST INTERACTIONS IN NEMATIC LIQUID CRYSTALS. A NEW ELECTRO‐OPTIC EFFECT". Applied Physics Letters. 13 (3). AIP Publishing: 91–92. doi:10.1063/1.1652529. ISSN 0003-6951. /wiki/Doi_(identifier)

  2. Schadt, M.; Helfrich, W. (1971-02-15). "VOLTAGE‐DEPENDENT OPTICAL ACTIVITY OF A TWISTED NEMATIC LIQUID CRYSTAL". Applied Physics Letters. 18 (4). AIP Publishing: 127–128. doi:10.1063/1.1653593. ISSN 0003-6951. /wiki/Doi_(identifier)

  3. Scheffer, T. J.; Nehring, J. (1984-11-15). "A new, highly multiplexable liquid crystal display". Applied Physics Letters. 45 (10). AIP Publishing: 1021–1023. doi:10.1063/1.95048. ISSN 0003-6951. /wiki/Doi_(identifier)

  4. Soref, R.A. (1973-02-15). "Transverse field effects in nematic liquid crystals". Applied Physics Letters. 22 (4). AIP Publishing: 165–166. doi:10.1063/1.1654597. ISSN 0003-6951. /wiki/Doi_(identifier)

  5. Schiekel, M. F.; Fahrenschon, K. (1971-11-15). "Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields". Applied Physics Letters. 19 (10). AIP Publishing: 391–393. doi:10.1063/1.1653743. ISSN 0003-6951. /wiki/Doi_(identifier)

  6. K. Ohmuro, et al., SID'97 Digest, p. 845

  7. J. O. Kwag, et al., SID'00 Digest, p. 1077

  8. Bos, Philip J.; Koehler/beran, K. Rickey (1984). "The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device". Molecular Crystals and Liquid Crystals. 113 (1). Informa UK Limited: 329–339. doi:10.1080/00268948408071693. ISSN 0026-8941. /wiki/Doi_(identifier)

  9. White, Donald L.; Taylor, Gary N. (1974). "New absorptive mode reflective liquid‐crystal display device". Journal of Applied Physics. 45 (11). AIP Publishing: 4718–4723. doi:10.1063/1.1663124. ISSN 0021-8979. /wiki/Doi_(identifier)

  10. Berreman, D. W.; Heffner, W. R. (1980). "New bistable cholesteric liquid‐crystal display". Applied Physics Letters. 37 (1). AIP Publishing: 109–111. doi:10.1063/1.91680. ISSN 0003-6951. /wiki/Doi_(identifier)

  11. G. P. Brown, Proc. IDRC 2000, p. 76