In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function. Lagrange inversion is a special case of the inverse function theorem.
Statement
Suppose z is defined as a function of w by an equation of the form
z = f ( w ) {\displaystyle z=f(w)}where f is analytic at a point a and f ′ ( a ) ≠ 0. {\displaystyle f'(a)\neq 0.} Then it is possible to invert or solve the equation for w, expressing it in the form w = g ( z ) {\displaystyle w=g(z)} given by a power series1
g ( z ) = a + ∑ n = 1 ∞ g n ( z − f ( a ) ) n n ! , {\displaystyle g(z)=a+\sum _{n=1}^{\infty }g_{n}{\frac {(z-f(a))^{n}}{n!}},}where
g n = lim w → a d n − 1 d w n − 1 [ ( w − a f ( w ) − f ( a ) ) n ] . {\displaystyle g_{n}=\lim _{w\to a}{\frac {d^{n-1}}{dw^{n-1}}}\left[\left({\frac {w-a}{f(w)-f(a)}}\right)^{n}\right].}The theorem further states that this series has a non-zero radius of convergence, i.e., g ( z ) {\displaystyle g(z)} represents an analytic function of z in a neighbourhood of z = f ( a ) . {\displaystyle z=f(a).} This is also called reversion of series.
If the assertions about analyticity are omitted, the formula is also valid for formal power series and can be generalized in various ways: It can be formulated for functions of several variables; it can be extended to provide a ready formula for F(g(z)) for any analytic function F; and it can be generalized to the case f ′ ( a ) = 0 , {\displaystyle f'(a)=0,} where the inverse g is a multivalued function.
The theorem was proved by Lagrange2 and generalized by Hans Heinrich Bürmann,345 both in the late 18th century. There is a straightforward derivation using complex analysis and contour integration;6 the complex formal power series version is a consequence of knowing the formula for polynomials, so the theory of analytic functions may be applied. Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the formal residue, and a more direct formal proof is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting arguments or induction.789
If f is a formal power series, then the above formula does not give the coefficients of the compositional inverse series g directly in terms for the coefficients of the series f. If one can express the functions f and g in formal power series as
f ( w ) = ∑ k = 0 ∞ f k w k k ! and g ( z ) = ∑ k = 0 ∞ g k z k k ! {\displaystyle f(w)=\sum _{k=0}^{\infty }f_{k}{\frac {w^{k}}{k!}}\qquad {\text{and}}\qquad g(z)=\sum _{k=0}^{\infty }g_{k}{\frac {z^{k}}{k!}}}with f0 = 0 and f1 ≠ 0, then an explicit form of inverse coefficients can be given in term of Bell polynomials:10
g n = 1 f 1 n ∑ k = 1 n − 1 ( − 1 ) k n k ¯ B n − 1 , k ( f ^ 1 , f ^ 2 , … , f ^ n − k ) , n ≥ 2 , {\displaystyle g_{n}={\frac {1}{f_{1}^{n}}}\sum _{k=1}^{n-1}(-1)^{k}n^{\overline {k}}B_{n-1,k}({\hat {f}}_{1},{\hat {f}}_{2},\ldots ,{\hat {f}}_{n-k}),\quad n\geq 2,}where
f ^ k = f k + 1 ( k + 1 ) f 1 , g 1 = 1 f 1 , and n k ¯ = n ( n + 1 ) ⋯ ( n + k − 1 ) {\displaystyle {\begin{aligned}{\hat {f}}_{k}&={\frac {f_{k+1}}{(k+1)f_{1}}},\\g_{1}&={\frac {1}{f_{1}}},{\text{ and}}\\n^{\overline {k}}&=n(n+1)\cdots (n+k-1)\end{aligned}}}is the rising factorial.
When f1 = 1, the last formula can be interpreted in terms of the faces of associahedra 11
g n = ∑ F face of K n ( − 1 ) n − dim F f F , n ≥ 2 , {\displaystyle g_{n}=\sum _{F{\text{ face of }}K_{n}}(-1)^{n-\dim F}f_{F},\quad n\geq 2,}where f F = f i 1 ⋯ f i m {\displaystyle f_{F}=f_{i_{1}}\cdots f_{i_{m}}} for each face F = K i 1 × ⋯ × K i m {\displaystyle F=K_{i_{1}}\times \cdots \times K_{i_{m}}} of the associahedron K n . {\displaystyle K_{n}.}
Example
For instance, the algebraic equation of degree p
x p − x + z = 0 {\displaystyle x^{p}-x+z=0}can be solved for x by means of the Lagrange inversion formula for the function f(x) = x − xp, resulting in a formal series solution
x = ∑ k = 0 ∞ ( p k k ) z ( p − 1 ) k + 1 ( p − 1 ) k + 1 . {\displaystyle x=\sum _{k=0}^{\infty }{\binom {pk}{k}}{\frac {z^{(p-1)k+1}}{(p-1)k+1}}.}By convergence tests, this series is in fact convergent for | z | ≤ ( p − 1 ) p − p / ( p − 1 ) , {\displaystyle |z|\leq (p-1)p^{-p/(p-1)},} which is also the largest disk in which a local inverse to f can be defined.
Applications
Lagrange–Bürmann formula
There is a special case of Lagrange inversion theorem that is used in combinatorics and applies when f ( w ) = w / ϕ ( w ) {\displaystyle f(w)=w/\phi (w)} for some analytic ϕ ( w ) {\displaystyle \phi (w)} with ϕ ( 0 ) ≠ 0. {\displaystyle \phi (0)\neq 0.} Take a = 0 {\displaystyle a=0} to obtain f ( a ) = f ( 0 ) = 0. {\displaystyle f(a)=f(0)=0.} Then for the inverse g ( z ) {\displaystyle g(z)} (satisfying f ( g ( z ) ) ≡ z {\displaystyle f(g(z))\equiv z} ), we have
g ( z ) = ∑ n = 1 ∞ [ lim w → 0 d n − 1 d w n − 1 ( ( w w / ϕ ( w ) ) n ) ] z n n ! = ∑ n = 1 ∞ 1 n [ 1 ( n − 1 ) ! lim w → 0 d n − 1 d w n − 1 ( ϕ ( w ) n ) ] z n , {\displaystyle {\begin{aligned}g(z)&=\sum _{n=1}^{\infty }\left[\lim _{w\to 0}{\frac {d^{n-1}}{dw^{n-1}}}\left(\left({\frac {w}{w/\phi (w)}}\right)^{n}\right)\right]{\frac {z^{n}}{n!}}\\{}&=\sum _{n=1}^{\infty }{\frac {1}{n}}\left[{\frac {1}{(n-1)!}}\lim _{w\to 0}{\frac {d^{n-1}}{dw^{n-1}}}(\phi (w)^{n})\right]z^{n},\end{aligned}}}which can be written alternatively as
[ z n ] g ( z ) = 1 n [ w n − 1 ] ϕ ( w ) n , {\displaystyle [z^{n}]g(z)={\frac {1}{n}}[w^{n-1}]\phi (w)^{n},}where [ w r ] {\displaystyle [w^{r}]} is an operator which extracts the coefficient of w r {\displaystyle w^{r}} in the Taylor series of a function of w.
A generalization of the formula is known as the Lagrange–Bürmann formula:
[ z n ] H ( g ( z ) ) = 1 n [ w n − 1 ] ( H ′ ( w ) ϕ ( w ) n ) {\displaystyle [z^{n}]H(g(z))={\frac {1}{n}}[w^{n-1}](H'(w)\phi (w)^{n})}where H is an arbitrary analytic function.
Sometimes, the derivative H′(w) can be quite complicated. A simpler version of the formula replaces H′(w) with H(w)(1 − φ′(w)/φ(w)) to get
[ z n ] H ( g ( z ) ) = [ w n ] H ( w ) ϕ ( w ) n − 1 ( ϕ ( w ) − w ϕ ′ ( w ) ) , {\displaystyle [z^{n}]H(g(z))=[w^{n}]H(w)\phi (w)^{n-1}(\phi (w)-w\phi '(w)),}which involves φ′(w) instead of H′(w).
Lambert W function
Main article: Lambert W function
The Lambert W function is the function W ( z ) {\displaystyle W(z)} that is implicitly defined by the equation
W ( z ) e W ( z ) = z . {\displaystyle W(z)e^{W(z)}=z.}We may use the theorem to compute the Taylor series of W ( z ) {\displaystyle W(z)} at z = 0. {\displaystyle z=0.} We take f ( w ) = w e w {\displaystyle f(w)=we^{w}} and a = 0. {\displaystyle a=0.} Recognizing that
d n d x n e α x = α n e α x , {\displaystyle {\frac {d^{n}}{dx^{n}}}e^{\alpha x}=\alpha ^{n}e^{\alpha x},}this gives
W ( z ) = ∑ n = 1 ∞ [ lim w → 0 d n − 1 d w n − 1 e − n w ] z n n ! = ∑ n = 1 ∞ ( − n ) n − 1 z n n ! = z − z 2 + 3 2 z 3 − 8 3 z 4 + O ( z 5 ) . {\displaystyle {\begin{aligned}W(z)&=\sum _{n=1}^{\infty }\left[\lim _{w\to 0}{\frac {d^{n-1}}{dw^{n-1}}}e^{-nw}\right]{\frac {z^{n}}{n!}}\\{}&=\sum _{n=1}^{\infty }(-n)^{n-1}{\frac {z^{n}}{n!}}\\{}&=z-z^{2}+{\frac {3}{2}}z^{3}-{\frac {8}{3}}z^{4}+O(z^{5}).\end{aligned}}}The radius of convergence of this series is e − 1 {\displaystyle e^{-1}} (giving the principal branch of the Lambert function).
A series that converges for | ln ( z ) − 1 | < 4 + π 2 {\displaystyle |\ln(z)-1|<{\sqrt {4+\pi ^{2}}}} (approximately 0.0655 < z < 112.63 {\displaystyle 0.0655<z<112.63} ) can also be derived by series inversion. The function f ( z ) = W ( e z ) − 1 {\displaystyle f(z)=W(e^{z})-1} satisfies the equation
1 + f ( z ) + ln ( 1 + f ( z ) ) = z . {\displaystyle 1+f(z)+\ln(1+f(z))=z.}Then z + ln ( 1 + z ) {\displaystyle z+\ln(1+z)} can be expanded into a power series and inverted.12 This gives a series for f ( z + 1 ) = W ( e z + 1 ) − 1 : {\displaystyle f(z+1)=W(e^{z+1})-1{\text{:}}}
W ( e 1 + z ) = 1 + z 2 + z 2 16 − z 3 192 − z 4 3072 + 13 z 5 61440 − O ( z 6 ) . {\displaystyle W(e^{1+z})=1+{\frac {z}{2}}+{\frac {z^{2}}{16}}-{\frac {z^{3}}{192}}-{\frac {z^{4}}{3072}}+{\frac {13z^{5}}{61440}}-O(z^{6}).}W ( x ) {\displaystyle W(x)} can be computed by substituting ln x − 1 {\displaystyle \ln x-1} for z in the above series. For example, substituting −1 for z gives the value of W ( 1 ) ≈ 0.567143. {\displaystyle W(1)\approx 0.567143.}
Binary trees
Consider13 the set B {\displaystyle {\mathcal {B}}} of unlabelled binary trees. An element of B {\displaystyle {\mathcal {B}}} is either a leaf of size zero, or a root node with two subtrees. Denote by B n {\displaystyle B_{n}} the number of binary trees on n {\displaystyle n} nodes.
Removing the root splits a binary tree into two trees of smaller size. This yields the functional equation on the generating function B ( z ) = ∑ n = 0 ∞ B n z n : {\displaystyle \textstyle B(z)=\sum _{n=0}^{\infty }B_{n}z^{n}{\text{:}}}
B ( z ) = 1 + z B ( z ) 2 . {\displaystyle B(z)=1+zB(z)^{2}.}Letting C ( z ) = B ( z ) − 1 {\displaystyle C(z)=B(z)-1} , one has thus C ( z ) = z ( C ( z ) + 1 ) 2 . {\displaystyle C(z)=z(C(z)+1)^{2}.} Applying the theorem with ϕ ( w ) = ( w + 1 ) 2 {\displaystyle \phi (w)=(w+1)^{2}} yields
B n = [ z n ] C ( z ) = 1 n [ w n − 1 ] ( w + 1 ) 2 n = 1 n ( 2 n n − 1 ) = 1 n + 1 ( 2 n n ) . {\displaystyle B_{n}=[z^{n}]C(z)={\frac {1}{n}}[w^{n-1}](w+1)^{2n}={\frac {1}{n}}{\binom {2n}{n-1}}={\frac {1}{n+1}}{\binom {2n}{n}}.}This shows that B n {\displaystyle B_{n}} is the nth Catalan number.
Asymptotic approximation of integrals
In the Laplace–Erdelyi theorem that gives the asymptotic approximation for Laplace-type integrals, the function inversion is taken as a crucial step.
See also
- Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function.
- Lagrange reversion theorem for another theorem sometimes called the inversion theorem
- Formal power series#The Lagrange inversion formula
External links
- Weisstein, Eric W. "Bürmann's Theorem". MathWorld.
- Weisstein, Eric W. "Series Reversion". MathWorld.
- Bürmann–Lagrange series at Springer EOM
References
M. Abramowitz; I. A. Stegun, eds. (1972). "3.6.6. Lagrange's Expansion". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover. p. 14. http://people.math.sfu.ca/~cbm/aands/page_14.htm ↩
Lagrange, Joseph-Louis (1770). "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries". Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin: 251–326. https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.) http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1768&seite:int=257 ↩
Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: Hindenburg, Carl Friedrich, ed. (1798). "Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann" [Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann]. Archiv der reinen und angewandten Mathematik [Archive of pure and applied mathematics]. Vol. 2. Leipzig, Germany: Schäferischen Buchhandlung. pp. 495–499. https://books.google.com/books?id=jj4DAAAAQAAJ&pg=495 ↩
Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.) ↩
A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: "Rapport sur deux mémoires d'analyse du professeur Burmann," Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques, vol. 2, pages 13–17 (1799). http://gallica.bnf.fr/ark:/12148/bpt6k3217h.image.f22.langFR.pagination ↩
E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130 /wiki/E._T._Whittaker ↩
Richard, Stanley (2012). Enumerative combinatorics. Volume 1. Cambridge Stud. Adv. Math. Vol. 49. Cambridge: Cambridge University Press. ISBN 978-1-107-60262-5. MR 2868112. 978-1-107-60262-5 ↩
Ira, Gessel (2016), "Lagrange inversion", Journal of Combinatorial Theory, Series A, 144: 212–249, arXiv:1609.05988, doi:10.1016/j.jcta.2016.06.018, MR 3534068 /wiki/ArXiv_(identifier) ↩
Surya, Erlang; Warnke, Lutz (2023), "Lagrange Inversion Formula by Induction", The American Mathematical Monthly, 130 (10): 944–948, arXiv:2305.17576, doi:10.1080/00029890.2023.2251344, MR 4669236 /wiki/ArXiv_(identifier) ↩
Eqn (11.43), p. 437, C.A. Charalambides, Enumerative Combinatorics, Chapman & Hall / CRC, 2002 ↩
Aguiar, Marcelo; Ardila, Federico (2017). "Hopf monoids and generalized permutahedra". arXiv:1709.07504 [math.CO]. /wiki/ArXiv_(identifier) ↩
Corless, Robert M.; Jeffrey, David J.; Knuth, Donald E. (July 1997). "A sequence of series for the Lambert W function". Proceedings of the 1997 international symposium on Symbolic and algebraic computation. pp. 197–204. doi:10.1145/258726.258783. /wiki/Donald_E._Knuth ↩
Harris, John; Hirst, Jeffry L.; Mossinghoff, Michael (2008). Combinatorics and Graph Theory. Springer. pp. 185–189. ISBN 978-0387797113. 978-0387797113 ↩