Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Lattice disjoint

In mathematics, specifically in order theory and functional analysis, two elements x and y of a vector lattice X are lattice disjoint or simply disjoint if inf { | x | , | y | } = 0 {\displaystyle \inf \left\{|x|,|y|\right\}=0} , in which case we write x ⊥ y {\displaystyle x\perp y} , where the absolute value of x is defined to be | x | := sup { x , − x } {\displaystyle |x|:=\sup \left\{x,-x\right\}} . We say that two sets A and B are lattice disjoint or disjoint if a and b are disjoint for all a in A and all b in B, in which case we write A ⊥ B {\displaystyle A\perp B} . If A is the singleton set { a } {\displaystyle \{a\}} then we will write a ⊥ B {\displaystyle a\perp B} in place of { a } ⊥ B {\displaystyle \{a\}\perp B} . For any set A, we define the disjoint complement to be the set A ⊥ := { x ∈ X : x ⊥ A } {\displaystyle A^{\perp }:=\left\{x\in X:x\perp A\right\}} .

We don't have any images related to Lattice disjoint yet.
We don't have any YouTube videos related to Lattice disjoint yet.
We don't have any PDF documents related to Lattice disjoint yet.
We don't have any Books related to Lattice disjoint yet.
We don't have any archived web articles related to Lattice disjoint yet.

Characterizations

Two elements x and y are disjoint if and only if sup { | x | , | y | } = | x | + | y | {\displaystyle \sup\{|x|,|y|\}=|x|+|y|} . If x and y are disjoint then | x + y | = | x | + | y | {\displaystyle |x+y|=|x|+|y|} and ( x + y ) + = x + + y + {\displaystyle \left(x+y\right)^{+}=x^{+}+y^{+}} , where for any element z, z + := sup { z , 0 } {\displaystyle z^{+}:=\sup \left\{z,0\right\}} and z − := sup { − z , 0 } {\displaystyle z^{-}:=\sup \left\{-z,0\right\}} .

Properties

Disjoint complements are always bands, but the converse is not true in general. If A is a subset of X such that x = sup A {\displaystyle x=\sup A} exists, and if B is a subset lattice in X that is disjoint from A, then B is a lattice disjoint from { x } {\displaystyle \{x\}} .4

Representation as a disjoint sum of positive elements

For any x in X, let x + := sup { x , 0 } {\displaystyle x^{+}:=\sup \left\{x,0\right\}} and x − := sup { − x , 0 } {\displaystyle x^{-}:=\sup \left\{-x,0\right\}} , where note that both of these elements are ≥ 0 {\displaystyle \geq 0} and x = x + − x − {\displaystyle x=x^{+}-x^{-}} with | x | = x + + x − {\displaystyle |x|=x^{+}+x^{-}} . Then x + {\displaystyle x^{+}} and x − {\displaystyle x^{-}} are disjoint, and x = x + − x − {\displaystyle x=x^{+}-x^{-}} is the unique representation of x as the difference of disjoint elements that are ≥ 0 {\displaystyle \geq 0} .5 For all x and y in X, | x + − y + | ≤ | x − y | {\displaystyle \left|x^{+}-y^{+}\right|\leq |x-y|} and x + y = sup { x , y } + inf { x , y } {\displaystyle x+y=\sup\{x,y\}+\inf\{x,y\}} .6 If y ≥ 0 and xy then x+ ≤ y. Moreover, x ≤ y {\displaystyle x\leq y} if and only if x + ≤ y + {\displaystyle x^{+}\leq y^{+}} and x − ≤ x − 1 {\displaystyle x^{-}\leq x^{-1}} .7

See also

Sources

References

  1. Schaefer & Wolff 1999, pp. 204–214. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  2. Schaefer & Wolff 1999, pp. 74–78. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  3. Schaefer & Wolff 1999, pp. 74–78. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  4. Schaefer & Wolff 1999, pp. 74–78. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  5. Schaefer & Wolff 1999, pp. 74–78. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  6. Schaefer & Wolff 1999, pp. 74–78. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  7. Schaefer & Wolff 1999, pp. 74–78. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135