Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Legendre rational functions
Sequence of orthogonal functions on [0, ∞)

In mathematics, the Legendre rational functions are a sequence of orthogonal functions on [0, ∞). They are obtained by composing the Cayley transform with Legendre polynomials.

A rational Legendre function of degree n is defined as: R n ( x ) = 2 x + 1 P n ( x − 1 x + 1 ) {\displaystyle R_{n}(x)={\frac {\sqrt {2}}{x+1}}\,P_{n}\left({\frac {x-1}{x+1}}\right)} where P n ( x ) {\displaystyle P_{n}(x)} is a Legendre polynomial. These functions are eigenfunctions of the singular Sturm–Liouville problem: ( x + 1 ) d d x ( x d d x [ ( x + 1 ) v ( x ) ] ) + λ v ( x ) = 0 {\displaystyle (x+1){\frac {d}{dx}}\left(x{\frac {d}{dx}}\left[\left(x+1\right)v(x)\right]\right)+\lambda v(x)=0} with eigenvalues λ n = n ( n + 1 ) {\displaystyle \lambda _{n}=n(n+1)\,}

Related Image Collections Add Image
We don't have any YouTube videos related to Legendre rational functions yet.
We don't have any PDF documents related to Legendre rational functions yet.
We don't have any Books related to Legendre rational functions yet.
We don't have any archived web articles related to Legendre rational functions yet.

Properties

Many properties can be derived from the properties of the Legendre polynomials of the first kind. Other properties are unique to the functions themselves.

Recursion

R n + 1 ( x ) = 2 n + 1 n + 1 x − 1 x + 1 R n ( x ) − n n + 1 R n − 1 ( x ) f o r n ≥ 1 {\displaystyle R_{n+1}(x)={\frac {2n+1}{n+1}}\,{\frac {x-1}{x+1}}\,R_{n}(x)-{\frac {n}{n+1}}\,R_{n-1}(x)\quad \mathrm {for\,n\geq 1} } and 2 ( 2 n + 1 ) R n ( x ) = ( x + 1 ) 2 ( d d x R n + 1 ( x ) − d d x R n − 1 ( x ) ) + ( x + 1 ) ( R n + 1 ( x ) − R n − 1 ( x ) ) {\displaystyle 2(2n+1)R_{n}(x)=\left(x+1\right)^{2}\left({\frac {d}{dx}}R_{n+1}(x)-{\frac {d}{dx}}R_{n-1}(x)\right)+(x+1)\left(R_{n+1}(x)-R_{n-1}(x)\right)}

Limiting behavior

It can be shown that lim x → ∞ ( x + 1 ) R n ( x ) = 2 {\displaystyle \lim _{x\to \infty }(x+1)R_{n}(x)={\sqrt {2}}} and lim x → ∞ x ∂ x ( ( x + 1 ) R n ( x ) ) = 0 {\displaystyle \lim _{x\to \infty }x\partial _{x}((x+1)R_{n}(x))=0}

Orthogonality

∫ 0 ∞ R m ( x ) R n ( x ) d x = 2 2 n + 1 δ n m {\displaystyle \int _{0}^{\infty }R_{m}(x)\,R_{n}(x)\,dx={\frac {2}{2n+1}}\delta _{nm}} where δ n m {\displaystyle \delta _{nm}} is the Kronecker delta function.

Particular values

R 0 ( x ) = 2 x + 1 1 R 1 ( x ) = 2 x + 1 x − 1 x + 1 R 2 ( x ) = 2 x + 1 x 2 − 4 x + 1 ( x + 1 ) 2 R 3 ( x ) = 2 x + 1 x 3 − 9 x 2 + 9 x − 1 ( x + 1 ) 3 R 4 ( x ) = 2 x + 1 x 4 − 16 x 3 + 36 x 2 − 16 x + 1 ( x + 1 ) 4 {\displaystyle {\begin{aligned}R_{0}(x)&={\frac {\sqrt {2}}{x+1}}\,1\\R_{1}(x)&={\frac {\sqrt {2}}{x+1}}\,{\frac {x-1}{x+1}}\\R_{2}(x)&={\frac {\sqrt {2}}{x+1}}\,{\frac {x^{2}-4x+1}{(x+1)^{2}}}\\R_{3}(x)&={\frac {\sqrt {2}}{x+1}}\,{\frac {x^{3}-9x^{2}+9x-1}{(x+1)^{3}}}\\R_{4}(x)&={\frac {\sqrt {2}}{x+1}}\,{\frac {x^{4}-16x^{3}+36x^{2}-16x+1}{(x+1)^{4}}}\end{aligned}}}