Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Lehmer matrix

In mathematics, particularly matrix theory, the n×n Lehmer matrix (named after Derrick Henry Lehmer) is the constant symmetric matrix defined by

A i j = { i / j , j ≥ i j / i , j < i . {\displaystyle A_{ij}={\begin{cases}i/j,&j\geq i\\j/i,&j<i.\end{cases}}}

Alternatively, this may be written as

A i j = min ( i , j ) max ( i , j ) . {\displaystyle A_{ij}={\frac {{\mbox{min}}(i,j)}{{\mbox{max}}(i,j)}}.}
We don't have any images related to Lehmer matrix yet.
We don't have any YouTube videos related to Lehmer matrix yet.
We don't have any PDF documents related to Lehmer matrix yet.
We don't have any Books related to Lehmer matrix yet.
We don't have any archived web articles related to Lehmer matrix yet.

Properties

As can be seen in the examples section, if A is an n×n Lehmer matrix and B is an m×m Lehmer matrix, then A is a submatrix of B whenever m>n. The values of elements diminish toward zero away from the diagonal, where all elements have value 1.

The inverse of a Lehmer matrix is a tridiagonal matrix, where the superdiagonal and subdiagonal have strictly negative entries. Consider again the n×n A and m×m B Lehmer matrices, where m>n. A rather peculiar property of their inverses is that A−1 is nearly a submatrix of B−1, except for the A−1n,n element, which is not equal to B−1n,n.

A Lehmer matrix of order n has trace n.

Examples

The 2×2, 3×3 and 4×4 Lehmer matrices and their inverses are shown below.

A 2 = ( 1 1 / 2 1 / 2 1 ) ; A 2 − 1 = ( 4 / 3 − 2 / 3 − 2 / 3 4 / 3 ) ; A 3 = ( 1 1 / 2 1 / 3 1 / 2 1 2 / 3 1 / 3 2 / 3 1 ) ; A 3 − 1 = ( 4 / 3 − 2 / 3 − 2 / 3 32 / 15 − 6 / 5 − 6 / 5 9 / 5 ) ; A 4 = ( 1 1 / 2 1 / 3 1 / 4 1 / 2 1 2 / 3 1 / 2 1 / 3 2 / 3 1 3 / 4 1 / 4 1 / 2 3 / 4 1 ) ; A 4 − 1 = ( 4 / 3 − 2 / 3 − 2 / 3 32 / 15 − 6 / 5 − 6 / 5 108 / 35 − 12 / 7 − 12 / 7 16 / 7 ) . {\displaystyle {\begin{array}{lllll}A_{2}={\begin{pmatrix}1&1/2\\1/2&1\end{pmatrix}};&A_{2}^{-1}={\begin{pmatrix}4/3&-2/3\\-2/3&{\color {Brown}{\mathbf {4/3} }}\end{pmatrix}};\\\\A_{3}={\begin{pmatrix}1&1/2&1/3\\1/2&1&2/3\\1/3&2/3&1\end{pmatrix}};&A_{3}^{-1}={\begin{pmatrix}4/3&-2/3&\\-2/3&32/15&-6/5\\&-6/5&{\color {Brown}{\mathbf {9/5} }}\end{pmatrix}};\\\\A_{4}={\begin{pmatrix}1&1/2&1/3&1/4\\1/2&1&2/3&1/2\\1/3&2/3&1&3/4\\1/4&1/2&3/4&1\end{pmatrix}};&A_{4}^{-1}={\begin{pmatrix}4/3&-2/3&&\\-2/3&32/15&-6/5&\\&-6/5&108/35&-12/7\\&&-12/7&{\color {Brown}{\mathbf {16/7} }}\end{pmatrix}}.\\\end{array}}}

See also

  • Newman, M.; Todd, J. (1958). "The evaluation of matrix inversion programs". Journal of the Society for Industrial and Applied Mathematics. 6 (4): 466–476. JSTOR 2098717.