Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Lieb–Liniger model

In physics, the Lieb–Liniger model describes a gas of particles moving in one dimension and satisfying Bose–Einstein statistics. More specifically, it describes a one dimensional Bose gas with Dirac delta interactions. It is named after Elliott H. Lieb and Werner Liniger [de] who introduced the model in 1963. The model was developed to compare and test Nikolay Bogolyubov's theory of a weakly interaction Bose gas.

We don't have any images related to Lieb–Liniger model yet.
We don't have any YouTube videos related to Lieb–Liniger model yet.
We don't have any PDF documents related to Lieb–Liniger model yet.
We don't have any Books related to Lieb–Liniger model yet.
We don't have any archived web articles related to Lieb–Liniger model yet.

Definition

Given N {\displaystyle N} bosons moving in one-dimension on the x {\displaystyle x} -axis defined from [ 0 , L ] {\displaystyle [0,L]} with periodic boundary conditions, a state of the N-body system must be described by a many-body wave function ψ ( x 1 , x 2 , … , x j , … , x N ) {\displaystyle \psi (x_{1},x_{2},\dots ,x_{j},\dots ,x_{N})} . The Hamiltonian, of this model is introduced as

H = − ∑ i = 1 N ∂ 2 ∂ x i 2 + 2 c ∑ i = 1 N ∑ j > i N δ ( x i − x j )   , {\displaystyle H=-\sum _{i=1}^{N}{\frac {\partial ^{2}}{\partial x_{i}^{2}}}+2c\sum _{i=1}^{N}\sum _{j>i}^{N}\delta (x_{i}-x_{j})\ ,}

where δ {\displaystyle \delta } is the Dirac delta function. The constant c {\displaystyle c} denotes the strength of the interaction, c > 0 {\displaystyle c>0} represents a repulsive interaction and c < 0 {\displaystyle c<0} an attractive interaction.3 The hard core limit c → ∞ {\displaystyle c\to \infty } is known as the Tonks–Girardeau gas.4

For a collection of bosons, the wave function is unchanged under permutation of any two particles (permutation symmetry), i.e., ψ ( … , x i , … , x j , … ) = ψ ( … , x j , … , x i , … ) {\displaystyle \psi (\dots ,x_{i},\dots ,x_{j},\dots )=\psi (\dots ,x_{j},\dots ,x_{i},\dots )} for all i ≠ j {\displaystyle i\neq j} and ψ {\displaystyle \psi } satisfies ψ ( … , x j = 0 , … ) = ψ ( … , x j = L , … ) {\displaystyle \psi (\dots ,x_{j}=0,\dots )=\psi (\dots ,x_{j}=L,\dots )} for all j {\displaystyle j} .

The delta function in the Hamiltonian gives rise to a boundary condition when two coordinates, say x 1 {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}} are equal. The condition is that as x 2 {\displaystyle x_{2}} approaches x 1 {\displaystyle x_{1}} from above ( x 2 ↘ x 1 {\displaystyle x_{2}\searrow x_{1}} ), the derivative satisfies

( ∂ ∂ x 2 − ∂ ∂ x 1 ) ψ ( x 1 , x 2 ) | x 2 = x 1 + = c ψ ( x 1 = x 2 ) {\displaystyle \left.\left({\frac {\partial }{\partial x_{2}}}-{\frac {\partial }{\partial x_{1}}}\right)\psi (x_{1},x_{2})\right|_{x_{2}=x_{1}+}=c\psi (x_{1}=x_{2})} .

Solution

The time-independent Schrödinger equation H ψ = E ψ {\displaystyle H\psi =E\psi } , is solved by explicit construction of ψ {\displaystyle \psi } . Since ψ {\displaystyle \psi } is symmetric it is completely determined by its values in the simplex R {\displaystyle {\mathcal {R}}} , defined by the condition that 0 ≤ x 1 ≤ x 2 ≤ … , ≤ x N ≤ L {\displaystyle 0\leq x_{1}\leq x_{2}\leq \dots ,\leq x_{N}\leq L} .

The solution can be written in the form of a Bethe ansatz as5

ψ ( x 1 , … , x N ) = ∑ P a ( P ) exp ⁡ ( i ∑ j = 1 N k P j x j ) {\displaystyle \psi (x_{1},\dots ,x_{N})=\sum _{P}a(P)\exp \left(i\sum _{j=1}^{N}k_{Pj}x_{j}\right)} ,

with wave vectors 0 ≤ k 1 ≤ k 2 ≤ … , ≤ k N {\displaystyle 0\leq k_{1}\leq k_{2}\leq \dots ,\leq k_{N}} , where the sum is over all N ! {\displaystyle N!} permutations, P {\displaystyle P} , of the integers 1 , 2 , … , N {\displaystyle 1,2,\dots ,N} , and P {\displaystyle P} maps 1 , 2 , … , N {\displaystyle 1,2,\dots ,N} to P 1 , P 2 , … , P N {\displaystyle P_{1},P_{2},\dots ,P_{N}} . The coefficients a ( P ) {\displaystyle a(P)} , as well as the k {\displaystyle k} 's are determined by the condition H ψ = E ψ {\displaystyle H\psi =E\psi } , and this leads to a total energy

E = ∑ j = 1 N k j 2 {\displaystyle E=\sum _{j=1}^{N}\,k_{j}^{2}} ,

with the amplitudes given by

a ( P ) = ∏ 1 ≤ i < j ≤ N ( 1 + i c k P i − k P j ) . {\displaystyle a(P)=\prod _{1\leq i<j\leq N}\left(1+{\frac {ic}{k_{Pi}-k_{Pj}}}\right)\,.} 6

These equations determine ψ {\displaystyle \psi } in terms of the k {\displaystyle k} 's. These lead to N {\displaystyle N} equations:7

L k j = 2 π I j   − 2 ∑ i = 1 N arctan ⁡ ( k j − k i c ) for  j = 1 , … , N   , {\displaystyle L\,k_{j}=2\pi I_{j}\ -2\sum _{i=1}^{N}\arctan \left({\frac {k_{j}-k_{i}}{c}}\right)\qquad \qquad {\text{for }}j=1,\,\dots ,\,N\ ,}

where I 1 < I 2 < ⋯ < I N {\displaystyle I_{1}<I_{2}<\cdots <I_{N}} are integers when N {\displaystyle N} is odd and, when N {\displaystyle N} is even, they take values ± 1 2 , ± 3 2 , … {\displaystyle \pm {\frac {1}{2}},\pm {\frac {3}{2}},\dots } . For the ground state the I {\displaystyle I} 's satisfy

I j + 1 − I j = 1 , f o r   1 ≤ j < N and  I 1 = − I N . {\displaystyle I_{j+1}-I_{j}=1,\quad {\rm {for}}\ 1\leq j<N\qquad {\text{and }}I_{1}=-I_{N}.}

Thermodynamic limit

References

  1. Elliott H. Lieb and Werner Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, Physical Review 130: 1605–1616, 1963

  2. Lieb, Elliott (2008). "Lieb-Liniger model of a Bose Gas". Scholarpedia. 3 (12): 8712. doi:10.4249/scholarpedia.8712. ISSN 1941-6016. https://doi.org/10.4249%2Fscholarpedia.8712

  3. Eckle, Hans-Peter (29 July 2019). Models of Quantum Matter: A First Course on Integrability and the Bethe Ansatz. Oxford University Press. ISBN 978-0-19-166804-3. 978-0-19-166804-3

  4. Eckle, Hans-Peter (29 July 2019). Models of Quantum Matter: A First Course on Integrability and the Bethe Ansatz. Oxford University Press. ISBN 978-0-19-166804-3. 978-0-19-166804-3

  5. Lieb, Elliott (2008). "Lieb-Liniger model of a Bose Gas". Scholarpedia. 3 (12): 8712. doi:10.4249/scholarpedia.8712. ISSN 1941-6016. https://doi.org/10.4249%2Fscholarpedia.8712

  6. Dorlas, Teunis C. (1993). "Orthogonality and Completeness of the Bethe Ansatz Eigenstates of the nonlinear Schrödinger model". Communications in Mathematical Physics. 154 (2): 347–376. Bibcode:1993CMaPh.154..347D. doi:10.1007/BF02097001. S2CID 122730941. http://projecteuclid.org/euclid.cmp/1104252974

  7. Lieb, Elliott (2008). "Lieb-Liniger model of a Bose Gas". Scholarpedia. 3 (12): 8712. doi:10.4249/scholarpedia.8712. ISSN 1941-6016. https://doi.org/10.4249%2Fscholarpedia.8712