Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
List of Banach spaces
List article

In the mathematical field of functional analysis, Banach spaces are among the most important objects of study. In other areas of mathematical analysis, most spaces which arise in practice turn out to be Banach spaces as well.

Classical Banach spaces

According to Diestel (1984, Chapter VII), the classical Banach spaces are those defined by Dunford & Schwartz (1958), which is the source for the following table.

Glossary of symbols for the table below:

  • F {\displaystyle \mathbb {F} } denotes the field of real numbers R {\displaystyle \mathbb {R} } or complex numbers C . {\displaystyle \mathbb {C} .}
  • K {\displaystyle K} is a compact Hausdorff space.
  • p , q ∈ R {\displaystyle p,q\in \mathbb {R} } are real numbers with 1 < p , q < ∞ {\displaystyle 1<p,q<\infty } that are Hölder conjugates, meaning that they satisfy 1 q + 1 p = 1 {\displaystyle {\frac {1}{q}}+{\frac {1}{p}}=1} and thus also q = p p − 1 . {\displaystyle q={\frac {p}{p-1}}.}
  • Σ {\displaystyle \Sigma } is a σ {\displaystyle \sigma } -algebra of sets.
  • Ξ {\displaystyle \Xi } is an algebra of sets (for spaces only requiring finite additivity, such as the ba space).
  • μ {\displaystyle \mu } is a measure with variation | μ | . {\displaystyle |\mu |.} A positive measure is a real-valued positive set function defined on a σ {\displaystyle \sigma } -algebra which is countably additive.
Classical Banach spaces
Dual spaceReflexiveweakly sequentially completeNormNotes
F n {\displaystyle \mathbb {F} ^{n}} F n {\displaystyle \mathbb {F} ^{n}} YesYes ‖ x ‖ 2 {\displaystyle \|x\|_{2}} = ( ∑ i = 1 n | x i | 2 ) 1 / 2 {\displaystyle =\left(\sum _{i=1}^{n}|x_{i}|^{2}\right)^{1/2}} Euclidean space
ℓ p n {\displaystyle \ell _{p}^{n}} ℓ q n {\displaystyle \ell _{q}^{n}} YesYes ‖ x ‖ p {\displaystyle \|x\|_{p}} = ( ∑ i = 1 n | x i | p ) 1 p {\displaystyle =\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{\frac {1}{p}}}
ℓ ∞ n {\displaystyle \ell _{\infty }^{n}} ℓ 1 n {\displaystyle \ell _{1}^{n}} YesYes ‖ x ‖ ∞ {\displaystyle \|x\|_{\infty }} = max 1 ≤ i ≤ n | x i | {\displaystyle =\max \nolimits _{1\leq i\leq n}|x_{i}|}
ℓ p {\displaystyle \ell ^{p}} ℓ q {\displaystyle \ell ^{q}} YesYes ‖ x ‖ p {\displaystyle \|x\|_{p}} = ( ∑ i = 1 ∞ | x i | p ) 1 p {\displaystyle =\left(\sum _{i=1}^{\infty }|x_{i}|^{p}\right)^{\frac {1}{p}}}
ℓ 1 {\displaystyle \ell ^{1}} ℓ ∞ {\displaystyle \ell ^{\infty }} NoYes ‖ x ‖ 1 {\displaystyle \|x\|_{1}} = ∑ i = 1 ∞ | x i | {\displaystyle =\sum _{i=1}^{\infty }\left|x_{i}\right|}
ℓ ∞ {\displaystyle \ell ^{\infty }} ba {\displaystyle \operatorname {ba} } NoNo ‖ x ‖ ∞ {\displaystyle \|x\|_{\infty }} = sup i | x i | {\displaystyle =\sup \nolimits _{i}\left|x_{i}\right|}
c {\displaystyle \operatorname {c} } ℓ 1 {\displaystyle \ell ^{1}} NoNo ‖ x ‖ ∞ {\displaystyle \|x\|_{\infty }} = sup i | x i | {\displaystyle =\sup \nolimits _{i}\left|x_{i}\right|}
c 0 {\displaystyle c_{0}} ℓ 1 {\displaystyle \ell ^{1}} NoNo ‖ x ‖ ∞ {\displaystyle \|x\|_{\infty }} = sup i | x i | {\displaystyle =\sup \nolimits _{i}\left|x_{i}\right|} Isomorphic but not isometric to c . {\displaystyle c.}
bv {\displaystyle \operatorname {bv} } ℓ ∞ {\displaystyle \ell ^{\infty }} NoYes ‖ x ‖ b v {\displaystyle \|x\|_{bv}} = | x 1 | + ∑ i = 1 ∞ | x i + 1 − x i | {\displaystyle =\left|x_{1}\right|+\sum _{i=1}^{\infty }\left|x_{i+1}-x_{i}\right|} Isometrically isomorphic to ℓ 1 . {\displaystyle \ell ^{1}.}
bv 0 {\displaystyle \operatorname {bv} _{0}} ℓ ∞ {\displaystyle \ell ^{\infty }} NoYes ‖ x ‖ b v 0 {\displaystyle \|x\|_{bv_{0}}} = ∑ i = 1 ∞ | x i + 1 − x i | {\displaystyle =\sum _{i=1}^{\infty }\left|x_{i+1}-x_{i}\right|} Isometrically isomorphic to ℓ 1 . {\displaystyle \ell ^{1}.}
bs {\displaystyle \operatorname {bs} } ba {\displaystyle \operatorname {ba} } NoNo ‖ x ‖ b s {\displaystyle \|x\|_{bs}} = sup n | ∑ i = 1 n x i | {\displaystyle =\sup \nolimits _{n}\left|\sum _{i=1}^{n}x_{i}\right|} Isometrically isomorphic to ℓ ∞ . {\displaystyle \ell ^{\infty }.}
cs {\displaystyle \operatorname {cs} } ℓ 1 {\displaystyle \ell ^{1}} NoNo ‖ x ‖ b s {\displaystyle \|x\|_{bs}} = sup n | ∑ i = 1 n x i | {\displaystyle =\sup \nolimits _{n}\left|\sum _{i=1}^{n}x_{i}\right|} Isometrically isomorphic to c . {\displaystyle c.}
B ( K , Ξ ) {\displaystyle B(K,\Xi )} ba ⁡ ( Ξ ) {\displaystyle \operatorname {ba} (\Xi )} NoNo ‖ f ‖ B {\displaystyle \|f\|_{B}} = sup k ∈ K | f ( k ) | {\displaystyle =\sup \nolimits _{k\in K}|f(k)|}
C ( K ) {\displaystyle C(K)} rca ⁡ ( K ) {\displaystyle \operatorname {rca} (K)} NoNo ‖ x ‖ C ( K ) {\displaystyle \|x\|_{C(K)}} = max k ∈ K | f ( k ) | {\displaystyle =\max \nolimits _{k\in K}|f(k)|}
ba ⁡ ( Ξ ) {\displaystyle \operatorname {ba} (\Xi )} ?NoYes ‖ μ ‖ b a {\displaystyle \|\mu \|_{ba}} = sup S ∈ Ξ | μ | ( S ) {\displaystyle =\sup \nolimits _{S\in \Xi }|\mu |(S)}
ca ⁡ ( Σ ) {\displaystyle \operatorname {ca} (\Sigma )} ?NoYes ‖ μ ‖ b a {\displaystyle \|\mu \|_{ba}} = sup S ∈ Σ | μ | ( S ) {\displaystyle =\sup \nolimits _{S\in \Sigma }|\mu |(S)} A closed subspace of ba ⁡ ( Σ ) . {\displaystyle \operatorname {ba} (\Sigma ).}
rca ⁡ ( Σ ) {\displaystyle \operatorname {rca} (\Sigma )} ?NoYes ‖ μ ‖ b a {\displaystyle \|\mu \|_{ba}} = sup S ∈ Σ | μ | ( S ) {\displaystyle =\sup \nolimits _{S\in \Sigma }|\mu |(S)} A closed subspace of ca ⁡ ( Σ ) . {\displaystyle \operatorname {ca} (\Sigma ).}
L p ( μ ) {\displaystyle L^{p}(\mu )} L q ( μ ) {\displaystyle L^{q}(\mu )} YesYes ‖ f ‖ p {\displaystyle \|f\|_{p}} = ( ∫ | f | p d μ ) 1 p {\displaystyle =\left(\int |f|^{p}\,d\mu \right)^{\frac {1}{p}}}
L 1 ( μ ) {\displaystyle L^{1}(\mu )} L ∞ ( μ ) {\displaystyle L^{\infty }(\mu )} NoYes ‖ f ‖ 1 {\displaystyle \|f\|_{1}} = ∫ | f | d μ {\displaystyle =\int |f|\,d\mu } The dual is L ∞ ( μ ) {\displaystyle L^{\infty }(\mu )} if μ {\displaystyle \mu } is σ {\displaystyle \sigma } -finite.
BV ⁡ ( [ a , b ] ) {\displaystyle \operatorname {BV} ([a,b])} ?NoYes ‖ f ‖ B V {\displaystyle \|f\|_{BV}} = V f ( [ a , b ] ) + lim x → a + f ( x ) {\displaystyle =V_{f}([a,b])+\lim \nolimits _{x\to a^{+}}f(x)} V f ( [ a , b ] ) {\displaystyle V_{f}([a,b])} is the total variation of f {\displaystyle f}
NBV ⁡ ( [ a , b ] ) {\displaystyle \operatorname {NBV} ([a,b])} ?NoYes ‖ f ‖ B V {\displaystyle \|f\|_{BV}} = V f ( [ a , b ] ) {\displaystyle =V_{f}([a,b])} NBV ⁡ ( [ a , b ] ) {\displaystyle \operatorname {NBV} ([a,b])} consists of BV ⁡ ( [ a , b ] ) {\displaystyle \operatorname {BV} ([a,b])} functions such that lim x → a + f ( x ) = 0 {\displaystyle \lim \nolimits _{x\to a^{+}}f(x)=0}
AC ⁡ ( [ a , b ] ) {\displaystyle \operatorname {AC} ([a,b])} F + L ∞ ( [ a , b ] ) {\displaystyle \mathbb {F} +L^{\infty }([a,b])} NoYes ‖ f ‖ B V {\displaystyle \|f\|_{BV}} = V f ( [ a , b ] ) + lim x → a + f ( x ) {\displaystyle =V_{f}([a,b])+\lim \nolimits _{x\to a^{+}}f(x)} Isomorphic to the Sobolev space W 1 , 1 ( [ a , b ] ) . {\displaystyle W^{1,1}([a,b]).}
C n ( [ a , b ] ) {\displaystyle C^{n}([a,b])} rca ⁡ ( [ a , b ] ) {\displaystyle \operatorname {rca} ([a,b])} NoNo ‖ f ‖ {\displaystyle \|f\|} = ∑ i = 0 n sup x ∈ [ a , b ] | f ( i ) ( x ) | {\displaystyle =\sum _{i=0}^{n}\sup \nolimits _{x\in [a,b]}\left|f^{(i)}(x)\right|} Isomorphic to R n ⊕ C ( [ a , b ] ) , {\displaystyle \mathbb {R} ^{n}\oplus C([a,b]),} essentially by Taylor's theorem.

Banach spaces in other areas of analysis

Banach spaces serving as counterexamples

See also

Notes

References

  1. W.T. Gowers, "A solution to the Schroeder–Bernstein problem for Banach spaces", Bulletin of the London Mathematical Society, 28 (1996) pp. 297–304.