Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
List of NP-complete problems
List article

This is a list of some of the more commonly known problems that are NP-complete when expressed as decision problems. As there are thousands of such problems known, this list is in no way comprehensive. Many problems of this type can be found in Garey & Johnson (1979).

Graphs and hypergraphs

Graphs occur frequently in everyday applications. Examples include biological or social networks, which contain hundreds, thousands and even billions of nodes in some cases (e.g. Facebook or LinkedIn).

NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem.16: ND2  NP-complete special cases include the minimum maximal matching problem,37: GT10  which is essentially equal to the edge dominating set problem (see above).

Mathematical programming

Formal languages and string processing

Games and puzzles

Other

See also

Notes

General

Specific problems

References

  1. Grigoriev & Bodlaender (2007). - Grigoriev, A; Bodlaender, H L (2007). "Algorithms for graphs embeddable with few crossings per edge". Algorithmica. 49 (1): 1–11. CiteSeerX 10.1.1.61.3576. doi:10.1007/s00453-007-0010-x. MR 2344391. S2CID 8174422. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.3576

  2. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  3. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  4. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  5. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  6. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  7. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  8. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  9. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  10. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  11. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  12. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  13. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  14. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  15. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  16. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  17. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  18. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  19. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  20. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  21. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  22. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  23. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  24. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  25. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  26. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  27. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  28. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  29. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  30. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  31. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  32. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  33. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  34. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  35. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  36. Minimum Independent Dominating Set http://www.csc.kth.se/~viggo/wwwcompendium/node14.html

  37. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  38. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  39. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  40. Brandes, Ulrik; Delling, Daniel; Gaertler, Marco; Görke, Robert; Hoefer, Martin; Nikoloski, Zoran; Wagner, Dorothea (2006), Maximizing Modularity is hard, arXiv:physics/0608255, Bibcode:2006physics...8255B /wiki/Ulrik_Brandes

  41. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  42. Arnborg, Corneil & Proskurowski (1987) - Arnborg, Stefan; Corneil, Derek G.; Proskurowski, Andrzej (1987). "Complexity of finding embeddings in a k-tree". SIAM Journal on Algebraic and Discrete Methods. 8 (2): 277–284. doi:10.1137/0608024. https://doi.org/10.1137%2F0608024

  43. Kashiwabara & Fujisawa (1979); Ohtsuki et al. (1979); Lengauer (1981). - Kashiwabara, T.; Fujisawa, T. (1979). "NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph". Proceedings. International Symposium on Circuits and Systems. pp. 657–660.

  44. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  45. Garg, Ashim; Tamassia, Roberto (1995). "On the computational complexity of upward and rectilinear planarity testing". Lecture Notes in Computer Science. Vol. 894/1995. pp. 286–297. doi:10.1007/3-540-58950-3_384. ISBN 978-3-540-58950-1. 978-3-540-58950-1

  46. Schaefer, Marcus; Sedgwick, Eric; Štefankovič, Daniel (September 2003). "Recognizing string graphs in NP". Journal of Computer and System Sciences. 67 (2): 365–380. doi:10.1016/S0022-0000(03)00045-X. https://doi.org/10.1016%2FS0022-0000%2803%2900045-X

  47. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  48. Arnborg, Corneil & Proskurowski (1987) - Arnborg, Stefan; Corneil, Derek G.; Proskurowski, Andrzej (1987). "Complexity of finding embeddings in a k-tree". SIAM Journal on Algebraic and Discrete Methods. 8 (2): 277–284. doi:10.1137/0608024. https://doi.org/10.1137%2F0608024

  49. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  50. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  51. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  52. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  53. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  54. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  55. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  56. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  57. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  58. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  59. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  60. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  61. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  62. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  63. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  64. Lanctot, J. Kevin; Li, Ming; Ma, Bin; Wang, Shaojiu; Zhang, Louxin (2003), "Distinguishing string selection problems", Information and Computation, 185 (1): 41–55, doi:10.1016/S0890-5401(03)00057-9, MR 1994748 /wiki/Doi_(identifier)

  65. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  66. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  67. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  68. Wagner, Robert A. (May 1975). "On the complexity of the Extended String-to-String Correction Problem". Proceedings of seventh annual ACM symposium on Theory of computing - STOC '75. pp. 218–223. doi:10.1145/800116.803771. ISBN 9781450374194. S2CID 18705107. 9781450374194

  69. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  70. Friedman, Erich. "Corral Puzzles are NP-complete" (PDF). Retrieved 17 August 2021. https://erich-friedman.github.io/papers/corral.pdf

  71. Yato, Takauki (2003). Complexity and Completeness of Finding Another Solution and its Application to Puzzles. CiteSeerX 10.1.1.103.8380. /wiki/CiteSeerX_(identifier)

  72. Malte Helmert, Complexity results for standard benchmark domains in planning, Artificial Intelligence 143(2):219-262, 2003.

  73. "HASHIWOKAKERO Is NP-Complete". http://www.cs.au.dk/~koda/hashiwokakero

  74. Holzer & Ruepp (2007) - Holzer, Markus; Ruepp, Oliver (2007). "The Troubles of Interior Design–A Complexity Analysis of the Game Heyawake" (PDF). Proceedings, 4th International Conference on Fun with Algorithms, LNCS 4475. Springer, Berlin/Heidelberg. pp. 198–212. doi:10.1007/978-3-540-72914-3_18. ISBN 978-3-540-72913-6. https://mediatum.ub.tum.de/doc/1289953/document.pdf

  75. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  76. Takahiro, Seta (5 February 2002). "The complexities of puzzles, cross sum and their another solution problems (ASP)" (PDF). Retrieved 18 November 2018. http://www-imai.is.s.u-tokyo.ac.jp/~seta/paper/senior_thesis/seniorthesis.pdf

  77. Nguyen, Viet-Ha; Perrot, Kévin; Vallet, Mathieu (24 June 2020). "NP-completeness of the game KingdominoTM". Theoretical Computer Science. 822: 23–35. doi:10.1016/j.tcs.2020.04.007. ISSN 0304-3975. S2CID 218552723. https://doi.org/10.1016%2Fj.tcs.2020.04.007

  78. Kölker, Jonas (2012). "Kurodoko is NP-complete" (PDF). Journal of Information Processing. 20 (3): 694–706. doi:10.2197/ipsjjip.20.694. S2CID 46486962. Archived from the original (PDF) on 12 February 2020. https://web.archive.org/web/20200212021124/https://pdfs.semanticscholar.org/4971/aa310e07aaa07c1ba7299f519b39ba5c5195.pdf

  79. Alexandersson, Per; Restadh, Petter (2020). "LaserTank is NP-Complete". Mathematical Aspects of Computer and Information Sciences. Lecture Notes in Computer Science. Vol. 11989. Springer International Publishing. pp. 333–338. arXiv:1908.05966. doi:10.1007/978-3-030-43120-4_26. ISBN 978-3-030-43119-8. S2CID 201058355. 978-3-030-43119-8

  80. Cormode, Graham (2004). The hardness of the lemmings game, or Oh no, more NP-completeness proofs (PDF). http://dimacs.rutgers.edu/~graham/pubs/papers/cormodelemmings.pdf

  81. Light Up is NP-Complete https://web.archive.org/web/20080308132136/http://www.cs.umass.edu/~mcphailb/papers/2005lightup.pdf

  82. Friedman, Erich (27 March 2012). "Pearl Puzzles are NP-complete". Archived from the original on 4 February 2012. https://web.archive.org/web/20120204150006/http://www2.stetson.edu/~efriedma/papers/pearl/pearl.html

  83. Kaye (2000) - Kaye, Richard (2000). "Minesweeper is NP-complete". Mathematical Intelligencer. 22 (2): 9–15. doi:10.1007/BF03025367. S2CID 122435790. https://doi.org/10.1007%2FBF03025367

  84. Allan Scott, Ulrike Stege, Iris van Rooij, Minesweeper may not be NP-complete but is hard nonetheless, The Mathematical Intelligencer 33:4 (2011), pp. 5–17.

  85. Holzer, Markus; Klein, Andreas; Kutrib, Martin; Ruepp, Oliver (2011). "Computational Complexity of NURIKABE". Fundamenta Informaticae. 110 (1–4): 159–174. doi:10.3233/FI-2011-534. /wiki/Doi_(identifier)

  86. Nakai, Kenichiro; Takenaga, Yasuhiko (2012). "NP-Completeness of Pandemic". Journal of Information Processing. 20 (3): 723–726. doi:10.2197/ipsjjip.20.723. ISSN 1882-6652. https://doi.org/10.2197%2Fipsjjip.20.723

  87. Demaine, Erik; Eisenstat, Sarah; Rudoy, Mikhail (2018). Solving the Rubik's Cube Optimally is NP-complete. 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). doi:10.4230/LIPIcs.STACS.2018.24. /wiki/Doi_(identifier)

  88. Sato, Takayuki; Seta, Takahiro (1987). Complexity and Completeness of Finding Another Solution and Its Application to Puzzles (PDF). International Symposium on Algorithms (SIGAL 1987). http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf

  89. Nukui; Uejima (March 2007). "ASP-Completeness of the Slither Link Puzzle on Several Grids". Ipsj Sig Notes. 2007 (23): 129–136. http://ci.nii.ac.jp/naid/110006249219/en/

  90. Kölker, Jonas (2012). "Selected Slither Link Variants are NP-complete". Journal of Information Processing. 20 (3): 709–712. doi:10.2197/ipsjjip.20.709. https://doi.org/10.2197%2Fipsjjip.20.709

  91. Sato, Takayuki; Seta, Takahiro (1987). Complexity and Completeness of Finding Another Solution and Its Application to Puzzles (PDF). International Symposium on Algorithms (SIGAL 1987). http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf

  92. A SURVEY OF NP-COMPLETE PUZZLES, Section 23; Graham Kendall, Andrew Parkes, Kristian Spoerer; March 2008. (icga2008.pdf) https://www.cs.wmich.edu/elise/courses/cs431/icga2008.pdf

  93. Demaine, Eric D.; Hohenberger, Susan; Liben-Nowell, David (25–28 July 2003). Tetris is Hard, Even to Approximate (PDF). Proceedings of the 9th International Computing and Combinatorics Conference (COCOON 2003). Big Sky, Montana. http://erikdemaine.org/papers/Tetris_COCOON2003/paper.pdf

  94. Lim, Andrew (1998), "The berth planning problem", Operations Research Letters, 22 (2–3): 105–110, doi:10.1016/S0167-6377(98)00010-8, MR 1653377 /wiki/Doi_(identifier)

  95. J. Bonneau, "Bitcoin mining is NP-hard" https://freedom-to-tinker.com/blog/jbonneau/bitcoin-mining-is-np-hard/

  96. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  97. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  98. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  99. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  100. Galil, Zvi; Megiddo, Nimrod (October 1977). "Cyclic ordering is NP-complete". Theoretical Computer Science. 5 (2): 179–182. doi:10.1016/0304-3975(77)90005-6. https://doi.org/10.1016%2F0304-3975%2877%2990005-6

  101. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  102. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  103. Whitfield, James Daniel; Love, Peter John; Aspuru-Guzik, Alán (2013). "Computational complexity in electronic structure". Phys. Chem. Chem. Phys. 15 (2): 397–411. arXiv:1208.3334. Bibcode:2013PCCP...15..397W. doi:10.1039/C2CP42695A. PMID 23172634. S2CID 12351374. https://doi.org/10.1039/C2CP42695A

  104. Garg, Ashim; Tamassia, Roberto (1995). "On the computational complexity of upward and rectilinear planarity testing". Lecture Notes in Computer Science. Vol. 894/1995. pp. 286–297. doi:10.1007/3-540-58950-3_384. ISBN 978-3-540-58950-1. 978-3-540-58950-1

  105. Agol, Ian; Hass, Joel; Thurston, William (19 May 2002). "3-manifold knot genus is NP-complete". Proceedings of the thiry-fourth annual ACM symposium on Theory of computing. STOC '02. New York, NY, USA: Association for Computing Machinery. pp. 761–766. arXiv:math/0205057. doi:10.1145/509907.510016. ISBN 978-1-58113-495-7. S2CID 10401375. 978-1-58113-495-7

  106. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  107. Çivril, Ali; Magdon-Ismail, Malik (2009), "On selecting a maximum volume sub-matrix of a matrix and related problems" (PDF), Theoretical Computer Science, 410 (47–49): 4801–4811, doi:10.1016/j.tcs.2009.06.018, MR 2583677, archived from the original (PDF) on 3 February 2015 https://web.archive.org/web/20150203193923/http://www.meliksah.edu.tr/acivril/max-vol-original.pdf

  108. Peter Downey, Benton Leong, and Ravi Sethi. "Computing Sequences with Addition Chains" SIAM J. Comput., 10(3), 638–646, 1981

  109. D. J. Bernstein, "Pippinger's exponentiation algorithm" (draft) http://cr.yp.to/papers/pippenger.pdf

  110. Hurkens, C.; Iersel, L. V.; Keijsper, J.; Kelk, S.; Stougie, L.; Tromp, J. (2007). "Prefix reversals on binary and ternary strings". SIAM J. Discrete Math. 21 (3): 592–611. arXiv:math/0602456. doi:10.1137/060664252. /wiki/ArXiv_(identifier)

  111. Manders, Kenneth; Adleman, Leonard (1976). "NP-complete decision problems for quadratic polynomials". Proceedings of the eighth annual ACM symposium on Theory of computing - STOC '76. pp. 23–29. doi:10.1145/800113.803627. ISBN 9781450374149. S2CID 18885088. 9781450374149

  112. Manders, Kenneth; Adleman, Leonard (1976). "NP-complete decision problems for quadratic polynomials". Proceedings of the eighth annual ACM symposium on Theory of computing - STOC '76. pp. 23–29. doi:10.1145/800113.803627. ISBN 9781450374149. S2CID 18885088. 9781450374149

  113. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  114. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  115. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  116. Karp (1972) - Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. (eds.). Complexity of Computer Computations. Plenum. pp. 85–103.

  117. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  118. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  119. Bein, W. W.; Larmore, L. L.; Latifi, S.; Sudborough, I. H. (1 January 2002). "Block sorting is hard". Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02. pp. 307–312. doi:10.1109/ISPAN.2002.1004305. ISBN 978-0-7695-1579-3. S2CID 32222403. 978-0-7695-1579-3

  120. Garey & Johnson (1979) - Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676. https://mathscinet.ams.org/mathscinet-getitem?mr=0519066

  121. Barry Arthur Cipra, "The Ising Model Is NP-Complete", SIAM News, Vol 33, No 6. /wiki/Barry_Arthur_Cipra