Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
List of integrals of hyperbolic functions
List article

The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals.

In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

Integrals involving only hyperbolic sine functions

  • ∫ sinh ⁡ a x d x = 1 a cosh ⁡ a x + C {\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C}
  • ∫ sinh 2 ⁡ a x d x = 1 4 a sinh ⁡ 2 a x − x 2 + C {\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C}
  • ∫ sinh n ⁡ a x d x = { 1 a n ( sinh n − 1 ⁡ a x ) ( cosh ⁡ a x ) − n − 1 n ∫ sinh n − 2 ⁡ a x d x , n > 0 1 a ( n + 1 ) ( sinh n + 1 ⁡ a x ) ( cosh ⁡ a x ) − n + 2 n + 1 ∫ sinh n + 2 ⁡ a x d x , n < 0 , n ≠ − 1 {\displaystyle \int \sinh ^{n}ax\,dx={\begin{cases}{\frac {1}{an}}(\sinh ^{n-1}ax)(\cosh ax)-{\frac {n-1}{n}}\displaystyle \int \sinh ^{n-2}ax\,dx,&n>0\\{\frac {1}{a(n+1)}}(\sinh ^{n+1}ax)(\cosh ax)-{\frac {n+2}{n+1}}\displaystyle \int \sinh ^{n+2}ax\,dx,&n<0,n\neq -1\end{cases}}}
  • ∫ d x sinh ⁡ a x = 1 a ln ⁡ | tanh ⁡ a x 2 | + C = 1 a ln ⁡ | cosh ⁡ a x − 1 sinh ⁡ a x | + C = 1 a ln ⁡ | sinh ⁡ a x cosh ⁡ a x + 1 | + C = 1 2 a ln ⁡ | cosh ⁡ a x − 1 cosh ⁡ a x + 1 | + C {\displaystyle {\begin{aligned}\int {\frac {dx}{\sinh ax}}&={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\\&={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\sinh ax}}\right|+C\\&={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\\&={\frac {1}{2a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\end{aligned}}}
  • ∫ d x sinh n ⁡ a x = − cosh ⁡ a x a ( n − 1 ) sinh n − 1 ⁡ a x − n − 2 n − 1 ∫ d x sinh n − 2 ⁡ a x (for  n ≠ 1 ) {\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
  • ∫ x sinh ⁡ a x d x = 1 a x cosh ⁡ a x − 1 a 2 sinh ⁡ a x + C {\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C}
  • ∫ ( sinh ⁡ a x ) ( sinh ⁡ b x ) d x = 1 a 2 − b 2 ( a ( sinh ⁡ b x ) ( cosh ⁡ a x ) − b ( cosh ⁡ b x ) ( sinh ⁡ a x ) ) + C (for  a 2 ≠ b 2 ) {\displaystyle \int (\sinh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh bx)(\cosh ax)-b(\cosh bx)(\sinh ax){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}

Integrals involving only hyperbolic cosine functions

  • ∫ cosh ⁡ a x d x = 1 a sinh ⁡ a x + C {\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C}
  • ∫ cosh 2 ⁡ a x d x = 1 4 a sinh ⁡ 2 a x + x 2 + C {\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C}
  • ∫ cosh n ⁡ a x d x = { 1 a n ( sinh ⁡ a x ) ( cosh n − 1 ⁡ a x ) + n − 1 n ∫ cosh n − 2 ⁡ a x d x , n > 0 − 1 a ( n + 1 ) ( sinh ⁡ a x ) ( cosh n + 1 ⁡ a x ) + n + 2 n + 1 ∫ cosh n + 2 ⁡ a x d x , n < 0 , n ≠ − 1 {\displaystyle \int \cosh ^{n}ax\,dx={\begin{cases}{\frac {1}{an}}(\sinh ax)(\cosh ^{n-1}ax)+{\frac {n-1}{n}}\displaystyle \int \cosh ^{n-2}ax\,dx,&n>0\\-{\frac {1}{a(n+1)}}(\sinh ax)(\cosh ^{n+1}ax)+{\frac {n+2}{n+1}}\displaystyle \int \cosh ^{n+2}ax\,dx,&n<0,n\neq -1\end{cases}}}
  • ∫ d x cosh ⁡ a x = 2 a arctan ⁡ e a x + C = 1 a arctan ⁡ ( sinh ⁡ a x ) + C {\displaystyle {\begin{aligned}\int {\frac {dx}{\cosh ax}}&={\frac {2}{a}}\arctan e^{ax}+C\\&={\frac {1}{a}}\arctan(\sinh ax)+C\end{aligned}}}
  • ∫ d x cosh n ⁡ a x = sinh ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + n − 2 n − 1 ∫ d x cosh n − 2 ⁡ a x (for  n ≠ 1 ) {\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
  • ∫ x cosh ⁡ a x d x = 1 a x sinh ⁡ a x − 1 a 2 cosh ⁡ a x + C {\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C}
  • ∫ x 2 cosh ⁡ a x d x = − 2 x cosh ⁡ a x a 2 + ( x 2 a + 2 a 3 ) sinh ⁡ a x + C {\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C}
  • ∫ ( cosh ⁡ a x ) ( cosh ⁡ b x ) d x = 1 a 2 − b 2 ( a ( sinh ⁡ a x ) ( cosh ⁡ b x ) − b ( sinh ⁡ b x ) ( cosh ⁡ a x ) ) + C (for  a 2 ≠ b 2 ) {\displaystyle \int (\cosh ax)(\cosh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\cosh bx)-b(\sinh bx)(\cosh ax){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}
  • ∫ d x 1 + cosh ⁡ ( a x ) = 2 a 1 1 + e − a x + C {\displaystyle \int {\frac {dx}{1+\cosh(ax)}}={\frac {2}{a}}{\frac {1}{1+e^{-ax}}}+C\quad } or 2 a {\displaystyle {\frac {2}{a}}} times The Logistic Function

Other integrals

Integrals of hyperbolic tangent, cotangent, secant, cosecant functions

  • ∫ tanh ⁡ x d x = ln ⁡ cosh ⁡ x + C {\displaystyle \int \tanh x\,dx=\ln \cosh x+C}
  • ∫ tanh 2 ⁡ a x d x = x − tanh ⁡ a x a + C {\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C}
  • ∫ tanh n ⁡ a x d x = − 1 a ( n − 1 ) tanh n − 1 ⁡ a x + ∫ tanh n − 2 ⁡ a x d x (for  n ≠ 1 ) {\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
  • ∫ coth ⁡ x d x = ln ⁡ | sinh ⁡ x | + C ,  for  x ≠ 0 {\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0}
  • ∫ coth n ⁡ a x d x = − 1 a ( n − 1 ) coth n − 1 ⁡ a x + ∫ coth n − 2 ⁡ a x d x (for  n ≠ 1 ) {\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
  • ∫ sech x d x = arctan ( sinh ⁡ x ) + C {\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C}
  • ∫ csch x d x = ln ⁡ | tanh ⁡ x 2 | + C = ln ⁡ | coth ⁡ x − csch ⁡ x | + C ,  for  x ≠ 0 {\displaystyle \int \operatorname {csch} \,x\,dx=\ln \left|\tanh {x \over 2}\right|+C=\ln \left|\coth {x}-\operatorname {csch} {x}\right|+C,{\text{ for }}x\neq 0}

Integrals involving hyperbolic sine and cosine functions

  • ∫ ( cosh ⁡ a x ) ( sinh ⁡ b x ) d x = 1 a 2 − b 2 ( a ( sinh ⁡ a x ) ( sinh ⁡ b x ) − b ( cosh ⁡ a x ) ( cosh ⁡ b x ) ) + C (for  a 2 ≠ b 2 ) {\displaystyle \int (\cosh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\sinh bx)-b(\cosh ax)(\cosh bx){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}
  • ∫ cosh n ⁡ a x sinh m ⁡ a x d x = cosh n − 1 ⁡ a x a ( n − m ) sinh m − 1 ⁡ a x + n − 1 n − m ∫ cosh n − 2 ⁡ a x sinh m ⁡ a x d x (for  m ≠ n ) = − cosh n + 1 ⁡ a x a ( m − 1 ) sinh m − 1 ⁡ a x + n − m + 2 m − 1 ∫ cosh n ⁡ a x sinh m − 2 ⁡ a x d x (for  m ≠ 1 ) = − cosh n − 1 ⁡ a x a ( m − 1 ) sinh m − 1 ⁡ a x + n − 1 m − 1 ∫ cosh n − 2 ⁡ a x sinh m − 2 ⁡ a x d x (for  m ≠ 1 ) {\displaystyle {\begin{aligned}\int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}\,dx&={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}\,dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\\&=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}\,dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\\&=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}\,dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\end{aligned}}}
  • ∫ sinh m ⁡ a x cosh n ⁡ a x d x = sinh m − 1 ⁡ a x a ( m − n ) cosh n − 1 ⁡ a x + m − 1 n − m ∫ sinh m − 2 ⁡ a x cosh n ⁡ a x d x (for  m ≠ n ) = sinh m + 1 ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + m − n + 2 n − 1 ∫ sinh m ⁡ a x cosh n − 2 ⁡ a x d x (for  n ≠ 1 ) = − sinh m − 1 ⁡ a x a ( n − 1 ) cosh n − 1 ⁡ a x + m − 1 n − 1 ∫ sinh m − 2 ⁡ a x cosh n − 2 ⁡ a x d x (for  n ≠ 1 ) {\displaystyle {\begin{aligned}\int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}\,dx&={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}\,dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\\&={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\\&=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\end{aligned}}}

Integrals involving hyperbolic and trigonometric functions

  • ∫ sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) d x = a a 2 + c 2 cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) − c a 2 + c 2 sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C}
  • ∫ sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) d x = a a 2 + c 2 cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + c a 2 + c 2 sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C}
  • ∫ cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) d x = a a 2 + c 2 sinh ⁡ ( a x + b ) sin ⁡ ( c x + d ) − c a 2 + c 2 cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C}
  • ∫ cosh ⁡ ( a x + b ) cos ⁡ ( c x + d ) d x = a a 2 + c 2 sinh ⁡ ( a x + b ) cos ⁡ ( c x + d ) + c a 2 + c 2 cosh ⁡ ( a x + b ) sin ⁡ ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C}