Manual image annotation is the process of manually defining regions in an image and creating a textual description of those regions. Such annotations can for instance be used to train machine learning algorithms for computer vision applications.
This is a list of computer software which can be used for manual annotation of images.
Software | Description | Platform | License | References |
---|---|---|---|---|
Computer Vision Annotation Tool (CVAT) | Computer Vision Annotation Tool (CVAT) is an open source, web-based annotation tool which helps to label video and images for computer vision algorithms. CVAT has many powerful features: interpolation of bounding boxes between key frames, automatic annotation using TensorFlow OD API and deep learning models in Intel OpenVINO IR format, shortcuts for most of critical actions, dashboard with a list of annotation tasks, LDAP and basic authorizations, etc. It was created for and used by a professional data annotation team. UX and UI were optimized especially for computer vision annotation tasks. | JavaScript, HTML, CSS, Python, Django | MIT License | |
LabelMe | Online annotation tool to build image databases for computer vision research. | Perl, JavaScript, HTML, CSS | MIT License | |
TagLab | Desktop open source interactive software system for facilitating the precise annotation of benthic species in orthophoto of the bottom of the sea. | Python | GPL | |
VoTT (Visual Object Tagging Tool) | Free and open source electron app for image annotation and labeling developed by Microsoft. | TypeScript/Electron (Windows, Linux, macOS) | MIT License |
References
"Intel open-sources CVAT, a toolkit for data labeling". VentureBeat. 2019-03-05. Retrieved 2019-03-09. https://venturebeat.com/2019/03/05/intel-open-sources-cvat-a-toolkit-for-data-labeling/ ↩
"Computer Vision Annotation Tool: A Universal Approach to Data Annotation". software.intel.com. 2019-03-01. Retrieved 2019-03-09. https://software.intel.com/en-us/articles/computer-vision-annotation-tool-a-universal-approach-to-data-annotation ↩
"Computer Vision Annotation Tool (CVAT) source code on github". GitHub. Retrieved 3 March 2019. https://github.com/opencv/cvat ↩
"LabelMe Source". GitHub. Retrieved 26 January 2017. https://github.com/CSAILVision/LabelMeAnnotationTool ↩
"TagLab Source". GitHub. Retrieved 5 July 2023. https://github.com/cnr-isti-vclab/TagLab ↩
Pavoni, Gaia; Corsini, Massimiliano; Ponchio, Federico; Muntoni, Alessandro; Edwards, Clinton; Pedersen, Nicole; Sandin, Stuart; Cignoni, Paolo (2022). "TagLab: AI-assisted annotation for the fast and accurate semantic segmentation of coral reef orthoimages". Journal of Field Robotics. 39 (3): 246–262. doi:10.1002/rob.22049. S2CID 244648241. /wiki/Doi_(identifier) ↩
Costa, Bryan; Sweeney, Edward; Mendez, Arnold (October 2022). "Leveraging Artificial Intelligence to Annotate Marine Benthic Species and Habitats". Noaa Technical Memorandum Nos Nccos. 306. doi:10.25923/7kgv-ba52. /wiki/Doi_(identifier) ↩
Tung, Liam. "Free AI developer app: IBM's new tool can label objects in videos for you". ZDNet. https://www.zdnet.com/article/free-ai-developer-app-ibms-new-tool-can-label-objects-in-videos-for-you/ ↩
"Best Open Source Annotation Tools for Computer Vision". www.sicara.ai. https://www.sicara.ai/blog/2019-09-01-top-five-open-source-annotation-tools-computer-vision ↩
"Beyond Sentiment Analysis: Object Detection with ML.NET". September 20, 2020. https://www.arafattehsin.com/beyond-sentiment-analysis-object-detection-with-ml-net/ ↩
"GitHub - microsoft/VoTT: Visual Object Tagging Tool: An electron app for building end to end Object Detection Models from Images and Videos". November 15, 2020 – via GitHub. https://github.com/microsoft/VoTT ↩