Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Local invariant cycle theorem
Invariant cycle theorem

In mathematics, the local invariant cycle theorem was originally a conjecture of Griffiths which states that, given a surjective proper map p {\displaystyle p} from a Kähler manifold X {\displaystyle X} to the unit disk that has maximal rank everywhere except over 0, each cohomology class on p − 1 ( t ) , t ≠ 0 {\displaystyle p^{-1}(t),t\neq 0} is the restriction of some cohomology class on the entire X {\displaystyle X} if the cohomology class is invariant under a circle action (monodromy action); in short,

H ∗ ⁡ ( X ) → H ∗ ⁡ ( p − 1 ( t ) ) S 1 {\displaystyle \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(p^{-1}(t))^{S^{1}}}

is surjective. The conjecture was first proved by Clemens. The theorem is also a consequence of the BBD decomposition.

Deligne also proved the following. Given a proper morphism X → S {\displaystyle X\to S} over the spectrum S {\displaystyle S} of the henselization of k [ T ] {\displaystyle k[T]} , k {\displaystyle k} an algebraically closed field, if X {\displaystyle X} is essentially smooth over k {\displaystyle k} and X η ¯ {\displaystyle X_{\overline {\eta }}} smooth over η ¯ {\displaystyle {\overline {\eta }}} , then the homomorphism on Q {\displaystyle \mathbb {Q} } -cohomology:

H ∗ ⁡ ( X s ) → H ∗ ⁡ ( X η ¯ ) Gal ⁡ ( η ¯ / η ) {\displaystyle \operatorname {H} ^{*}(X_{s})\to \operatorname {H} ^{*}(X_{\overline {\eta }})^{\operatorname {Gal} ({\overline {\eta }}/\eta )}}

is surjective, where s , η {\displaystyle s,\eta } are the special and generic points and the homomorphism is the composition H ∗ ⁡ ( X s ) ≃ H ∗ ⁡ ( X ) → H ∗ ⁡ ( X η ) → H ∗ ⁡ ( X η ¯ ) . {\displaystyle \operatorname {H} ^{*}(X_{s})\simeq \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(X_{\eta })\to \operatorname {H} ^{*}(X_{\overline {\eta }}).}

We don't have any images related to Local invariant cycle theorem yet.
We don't have any YouTube videos related to Local invariant cycle theorem yet.
We don't have any PDF documents related to Local invariant cycle theorem yet.
We don't have any Books related to Local invariant cycle theorem yet.
We don't have any archived web articles related to Local invariant cycle theorem yet.

See also

Notes

References

  1. Clemens 1977, Introduction - Clemens, C. H. (1977). "Degeneration of Kähler manifolds". Duke Mathematical Journal. 44 (2). doi:10.1215/S0012-7094-77-04410-6. S2CID 120378293. https://doi.org/10.1215%2FS0012-7094-77-04410-6

  2. Griffiths 1970, Conjecture 8.1. - Griffiths, Phillip A. (1970). "Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems". Bulletin of the American Mathematical Society. 76 (2): 228–296. doi:10.1090/S0002-9904-1970-12444-2. https://doi.org/10.1090%2FS0002-9904-1970-12444-2

  3. Beilinson, Bernstein & Deligne 1982, Corollaire 6.2.9. - Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre (1982). "Faisceaux pervers". Astérisque (in French). 100. Paris: Société Mathématique de France. MR 0751966. https://mathscinet.ams.org/mathscinet-getitem?mr=0751966

  4. Deligne 1980, Théorème 3.6.1. - Deligne, Pierre (1980). "La conjecture de Weil : II" (PDF). Publications Mathématiques de l'IHÉS. 52: 137–252. doi:10.1007/BF02684780. MR 0601520. S2CID 189769469. Zbl 0456.14014. http://www.numdam.org/item/PMIHES_1980__52__137_0.pdf

  5. Deligne 1980, (3.6.4.) - Deligne, Pierre (1980). "La conjecture de Weil : II" (PDF). Publications Mathématiques de l'IHÉS. 52: 137–252. doi:10.1007/BF02684780. MR 0601520. S2CID 189769469. Zbl 0456.14014. http://www.numdam.org/item/PMIHES_1980__52__137_0.pdf