In mathematics, the local invariant cycle theorem was originally a conjecture of Griffiths which states that, given a surjective proper map p {\displaystyle p} from a Kähler manifold X {\displaystyle X} to the unit disk that has maximal rank everywhere except over 0, each cohomology class on p − 1 ( t ) , t ≠ 0 {\displaystyle p^{-1}(t),t\neq 0} is the restriction of some cohomology class on the entire X {\displaystyle X} if the cohomology class is invariant under a circle action (monodromy action); in short,
H ∗ ( X ) → H ∗ ( p − 1 ( t ) ) S 1 {\displaystyle \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(p^{-1}(t))^{S^{1}}}is surjective. The conjecture was first proved by Clemens. The theorem is also a consequence of the BBD decomposition.
Deligne also proved the following. Given a proper morphism X → S {\displaystyle X\to S} over the spectrum S {\displaystyle S} of the henselization of k [ T ] {\displaystyle k[T]} , k {\displaystyle k} an algebraically closed field, if X {\displaystyle X} is essentially smooth over k {\displaystyle k} and X η ¯ {\displaystyle X_{\overline {\eta }}} smooth over η ¯ {\displaystyle {\overline {\eta }}} , then the homomorphism on Q {\displaystyle \mathbb {Q} } -cohomology:
H ∗ ( X s ) → H ∗ ( X η ¯ ) Gal ( η ¯ / η ) {\displaystyle \operatorname {H} ^{*}(X_{s})\to \operatorname {H} ^{*}(X_{\overline {\eta }})^{\operatorname {Gal} ({\overline {\eta }}/\eta )}}is surjective, where s , η {\displaystyle s,\eta } are the special and generic points and the homomorphism is the composition H ∗ ( X s ) ≃ H ∗ ( X ) → H ∗ ( X η ) → H ∗ ( X η ¯ ) . {\displaystyle \operatorname {H} ^{*}(X_{s})\simeq \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(X_{\eta })\to \operatorname {H} ^{*}(X_{\overline {\eta }}).}
See also
Notes
- Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre (1982). "Faisceaux pervers". Astérisque (in French). 100. Paris: Société Mathématique de France. MR 0751966.
- Clemens, C. H. (1977). "Degeneration of Kähler manifolds". Duke Mathematical Journal. 44 (2). doi:10.1215/S0012-7094-77-04410-6. S2CID 120378293.
- Deligne, Pierre (1980). "La conjecture de Weil : II" (PDF). Publications Mathématiques de l'IHÉS. 52: 137–252. doi:10.1007/BF02684780. MR 0601520. S2CID 189769469. Zbl 0456.14014.
- Griffiths, Phillip A. (1970). "Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems". Bulletin of the American Mathematical Society. 76 (2): 228–296. doi:10.1090/S0002-9904-1970-12444-2.
- Morrison, David R. The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 101-119, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984. [1]
References
Clemens 1977, Introduction - Clemens, C. H. (1977). "Degeneration of Kähler manifolds". Duke Mathematical Journal. 44 (2). doi:10.1215/S0012-7094-77-04410-6. S2CID 120378293. https://doi.org/10.1215%2FS0012-7094-77-04410-6 ↩
Griffiths 1970, Conjecture 8.1. - Griffiths, Phillip A. (1970). "Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems". Bulletin of the American Mathematical Society. 76 (2): 228–296. doi:10.1090/S0002-9904-1970-12444-2. https://doi.org/10.1090%2FS0002-9904-1970-12444-2 ↩
Beilinson, Bernstein & Deligne 1982, Corollaire 6.2.9. - Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre (1982). "Faisceaux pervers". Astérisque (in French). 100. Paris: Société Mathématique de France. MR 0751966. https://mathscinet.ams.org/mathscinet-getitem?mr=0751966 ↩
Deligne 1980, Théorème 3.6.1. - Deligne, Pierre (1980). "La conjecture de Weil : II" (PDF). Publications Mathématiques de l'IHÉS. 52: 137–252. doi:10.1007/BF02684780. MR 0601520. S2CID 189769469. Zbl 0456.14014. http://www.numdam.org/item/PMIHES_1980__52__137_0.pdf ↩
Deligne 1980, (3.6.4.) - Deligne, Pierre (1980). "La conjecture de Weil : II" (PDF). Publications Mathématiques de l'IHÉS. 52: 137–252. doi:10.1007/BF02684780. MR 0601520. S2CID 189769469. Zbl 0456.14014. http://www.numdam.org/item/PMIHES_1980__52__137_0.pdf ↩