Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Logarithmic mean
Difference of two numbers divided by the logarithm of their quotient

In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.

Related Image Collections Add Image
We don't have any YouTube videos related to Logarithmic mean yet.
We don't have any PDF documents related to Logarithmic mean yet.
We don't have any Books related to Logarithmic mean yet.
We don't have any archived web articles related to Logarithmic mean yet.

Definition

The logarithmic mean is defined as:

M lm ( x , y ) = lim ( ξ , η ) → ( x , y ) η − ξ ln ⁡ ( η ) − ln ⁡ ( ξ ) = { x if  x = y , y − x ln ⁡ y − ln ⁡ x otherwise, {\displaystyle {\begin{aligned}M_{\text{lm}}(x,y)&=\lim _{(\xi ,\eta )\to (x,y)}{\frac {\eta -\xi }{\ln(\eta )-\ln(\xi )}}\\[6pt]&={\begin{cases}x&{\text{if }}x=y,\\[2pt]{\dfrac {y-x}{\ln y-\ln x}}&{\text{otherwise,}}\end{cases}}\end{aligned}}}

for the positive numbers x, y.

Inequalities

The logarithmic mean of two numbers is smaller than the arithmetic mean and the generalized mean with exponent greater than 1. However, it is larger than the geometric mean and the harmonic mean, respectively. The inequalities are strict unless both numbers are equal. 1234 More precisely, for x , y ∈ R {\displaystyle x,y\in \mathbb {R} } with x ≠ y {\displaystyle x\neq y} , we have 2 x y x + y ≤ x y ≤ x − y ln ⁡ x − ln ⁡ y ≤ x + y 2 ≤ ( x 2 + y 2 2 ) 1 / 2 . {\displaystyle {\frac {2xy}{x+y}}\leq {\sqrt {xy}}\leq {\frac {x-y}{\ln x-\ln y}}\leq {\frac {x+y}{2}}\leq \left({\frac {x^{2}+y^{2}}{2}}\right)^{1/2}.} Sharma5 showed that, for any whole number n {\displaystyle n} and x , y ∈ R {\displaystyle x,y\in \mathbb {R} } with x ≠ y {\displaystyle x\neq y} , we have x y   ( ln ⁡ x y ) n − 1 ( n + ln ⁡ x y ) ≤ x ( ln ⁡ x ) n − y ( ln ⁡ y ) n ln ⁡ x − ln ⁡ y ≤ x ( ln ⁡ x ) n − 1 ( n + ln ⁡ x ) + y ( ln ⁡ y ) n − 1 ( n + ln ⁡ y ) 2 . {\displaystyle {\sqrt {xy}}\ \left(\ln {\sqrt {xy}}\right)^{n-1}\left(n+\ln {\sqrt {xy}}\right)\leq {\frac {x(\ln x)^{n}-y(\ln y)^{n}}{\ln x-\ln y}}\leq {\frac {x(\ln x)^{n-1}(n+\ln x)+y(\ln y)^{n-1}(n+\ln y)}{2}}.} This generalizes the arithmetic-logarithmic-geometric mean inequality. To see this, consider the case where n = 0 {\displaystyle n=0} .

Derivation

Mean value theorem of differential calculus

From the mean value theorem, there exists a value ξ in the interval between x and y where the derivative f ′ equals the slope of the secant line:

∃ ξ ∈ ( x , y ) :   f ′ ( ξ ) = f ( x ) − f ( y ) x − y {\displaystyle \exists \xi \in (x,y):\ f'(\xi )={\frac {f(x)-f(y)}{x-y}}}

The logarithmic mean is obtained as the value of ξ by substituting ln for f and similarly for its corresponding derivative:

1 ξ = ln ⁡ x − ln ⁡ y x − y {\displaystyle {\frac {1}{\xi }}={\frac {\ln x-\ln y}{x-y}}}

and solving for ξ:

ξ = x − y ln ⁡ x − ln ⁡ y {\displaystyle \xi ={\frac {x-y}{\ln x-\ln y}}}

Integration

The logarithmic mean can also be interpreted as the area under an exponential curve. L ( x , y ) = ∫ 0 1 x 1 − t y t   d t = ∫ 0 1 ( y x ) t x   d t = x ∫ 0 1 ( y x ) t d t = x ln ⁡ y x ( y x ) t | t = 0 1 = x ln ⁡ y x ( y x − 1 ) = y − x ln ⁡ y x = y − x ln ⁡ y − ln ⁡ x {\displaystyle {\begin{aligned}L(x,y)={}&\int _{0}^{1}x^{1-t}y^{t}\ \mathrm {d} t={}\int _{0}^{1}\left({\frac {y}{x}}\right)^{t}x\ \mathrm {d} t={}x\int _{0}^{1}\left({\frac {y}{x}}\right)^{t}\mathrm {d} t\\[3pt]={}&\left.{\frac {x}{\ln {\frac {y}{x}}}}\left({\frac {y}{x}}\right)^{t}\right|_{t=0}^{1}={}{\frac {x}{\ln {\frac {y}{x}}}}\left({\frac {y}{x}}-1\right)={}{\frac {y-x}{\ln {\frac {y}{x}}}}\\[3pt]={}&{\frac {y-x}{\ln y-\ln x}}\end{aligned}}}

The area interpretation allows the easy derivation of some basic properties of the logarithmic mean. Since the exponential function is monotonic, the integral over an interval of length 1 is bounded by x and y. The homogeneity of the integral operator is transferred to the mean operator, that is L ( c x , c y ) = c L ( x , y ) {\displaystyle L(cx,cy)=cL(x,y)} .

Two other useful integral representations are 1 L ( x , y ) = ∫ 0 1 d t t x + ( 1 − t ) y {\displaystyle {1 \over L(x,y)}=\int _{0}^{1}{\operatorname {d} \!t \over tx+(1-t)y}} and 1 L ( x , y ) = ∫ 0 ∞ d t ( t + x ) ( t + y ) . {\displaystyle {1 \over L(x,y)}=\int _{0}^{\infty }{\operatorname {d} \!t \over (t+x)\,(t+y)}.}

Generalization

Mean value theorem of differential calculus

One can generalize the mean to n + 1 variables by considering the mean value theorem for divided differences for the n-th derivative of the logarithm.

We obtain

L MV ( x 0 , … , x n ) = ( − 1 ) n + 1 n ln ⁡ ( [ x 0 , … , x n ] ) − n {\displaystyle L_{\text{MV}}(x_{0},\,\dots ,\,x_{n})={\sqrt[{-n}]{(-1)^{n+1}n\ln \left(\left[x_{0},\,\dots ,\,x_{n}\right]\right)}}}

where ln ⁡ ( [ x 0 , … , x n ] ) {\displaystyle \ln \left(\left[x_{0},\,\dots ,\,x_{n}\right]\right)} denotes a divided difference of the logarithm.

For n = 2 this leads to

L MV ( x , y , z ) = ( x − y ) ( y − z ) ( z − x ) 2 ( ( y − z ) ln ⁡ x + ( z − x ) ln ⁡ y + ( x − y ) ln ⁡ z ) . {\displaystyle L_{\text{MV}}(x,y,z)={\sqrt {\frac {(x-y)(y-z)(z-x)}{2{\bigl (}(y-z)\ln x+(z-x)\ln y+(x-y)\ln z{\bigr )}}}}.}

Integral

The integral interpretation can also be generalized to more variables, but it leads to a different result. Given the simplex S {\textstyle S} with S = { ( α 0 , … , α n ) : ( α 0 + ⋯ + α n = 1 ) ∧ ( α 0 ≥ 0 ) ∧ ⋯ ∧ ( α n ≥ 0 ) } {\displaystyle S=\{\left(\alpha _{0},\,\dots ,\,\alpha _{n}\right):\left(\alpha _{0}+\dots +\alpha _{n}=1\right)\land \left(\alpha _{0}\geq 0\right)\land \dots \land \left(\alpha _{n}\geq 0\right)\}} and an appropriate measure d α {\textstyle \mathrm {d} \alpha } which assigns the simplex a volume of 1, we obtain

L I ( x 0 , … , x n ) = ∫ S x 0 α 0 ⋅ ⋯ ⋅ x n α n   d α {\displaystyle L_{\text{I}}\left(x_{0},\,\dots ,\,x_{n}\right)=\int _{S}x_{0}^{\alpha _{0}}\cdot \,\cdots \,\cdot x_{n}^{\alpha _{n}}\ \mathrm {d} \alpha }

This can be simplified using divided differences of the exponential function to

L I ( x 0 , … , x n ) = n ! exp ⁡ [ ln ⁡ ( x 0 ) , … , ln ⁡ ( x n ) ] {\displaystyle L_{\text{I}}\left(x_{0},\,\dots ,\,x_{n}\right)=n!\exp \left[\ln \left(x_{0}\right),\,\dots ,\,\ln \left(x_{n}\right)\right]} .

Example n = 2:

L I ( x , y , z ) = − 2 x ( ln ⁡ y − ln ⁡ z ) + y ( ln ⁡ z − ln ⁡ x ) + z ( ln ⁡ x − ln ⁡ y ) ( ln ⁡ x − ln ⁡ y ) ( ln ⁡ y − ln ⁡ z ) ( ln ⁡ z − ln ⁡ x ) . {\displaystyle L_{\text{I}}(x,y,z)=-2{\frac {x(\ln y-\ln z)+y(\ln z-\ln x)+z(\ln x-\ln y)}{(\ln x-\ln y)(\ln y-\ln z)(\ln z-\ln x)}}.}

Connection to other means

  • Arithmetic mean: L ( x 2 , y 2 ) L ( x , y ) = x + y 2 {\displaystyle {\frac {L\left(x^{2},y^{2}\right)}{L(x,y)}}={\frac {x+y}{2}}}
  • Geometric mean: L ( x , y ) L ( 1 x , 1 y ) = x y {\displaystyle {\sqrt {\frac {L\left(x,y\right)}{L\left({\frac {1}{x}},{\frac {1}{y}}\right)}}}={\sqrt {xy}}}
  • Harmonic mean: L ( 1 x , 1 y ) L ( 1 x 2 , 1 y 2 ) = 2 1 x + 1 y {\displaystyle {\frac {L\left({\frac {1}{x}},{\frac {1}{y}}\right)}{L\left({\frac {1}{x^{2}}},{\frac {1}{y^{2}}}\right)}}={\frac {2}{{\frac {1}{x}}+{\frac {1}{y}}}}}

See also

Citations Bibliography

References

  1. B. C. Carlson (1966). "Some inequalities for hypergeometric functions". Proc. Amer. Math. Soc. 17: 32–39. doi:10.1090/s0002-9939-1966-0188497-6. https://doi.org/10.1090%2Fs0002-9939-1966-0188497-6

  2. B. Ostle & H. L. Terwilliger (1957). "A comparison of two means". Proc. Montana Acad. Sci. 17: 69–70.

  3. Tung-Po Lin (1974). "The Power Mean and the Logarithmic Mean". The American Mathematical Monthly. 81 (8): 879–883. doi:10.1080/00029890.1974.11993684. /wiki/Doi_(identifier)

  4. Frank Burk (1987). "The Geometric, Logarithmic, and Arithmetic Mean Inequality". The American Mathematical Monthly. 94 (6): 527–528. doi:10.2307/2322844. JSTOR 2322844. /wiki/Doi_(identifier)

  5. T. P. Sharma (2022). "A generalisation of the Arithmetic-Logarithmic-Geometric Mean Inequality". Parabola Magazine. 58 (2): 25–29. doi:10.1090/s0002-9939-1966-0188497-6. https://doi.org/10.1090%2Fs0002-9939-1966-0188497-6