The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:
z 2 d 2 y d z 2 + z d y d z + ( z 2 − ν 2 ) y = z μ + 1 . {\displaystyle z^{2}{\frac {d^{2}y}{dz^{2}}}+z{\frac {dy}{dz}}+(z^{2}-\nu ^{2})y=z^{\mu +1}.}Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),
s μ , ν ( z ) = π 2 [ Y ν ( z ) ∫ 0 z x μ J ν ( x ) d x − J ν ( z ) ∫ 0 z x μ Y ν ( x ) d x ] , {\displaystyle s_{\mu ,\nu }(z)={\frac {\pi }{2}}\left[Y_{\nu }(z)\!\int _{0}^{z}\!\!x^{\mu }J_{\nu }(x)\,dx-J_{\nu }(z)\!\int _{0}^{z}\!\!x^{\mu }Y_{\nu }(x)\,dx\right],} S μ , ν ( z ) = s μ , ν ( z ) + 2 μ − 1 Γ ( μ + ν + 1 2 ) Γ ( μ − ν + 1 2 ) ( sin [ ( μ − ν ) π 2 ] J ν ( z ) − cos [ ( μ − ν ) π 2 ] Y ν ( z ) ) , {\displaystyle S_{\mu ,\nu }(z)=s_{\mu ,\nu }(z)+2^{\mu -1}\Gamma \left({\frac {\mu +\nu +1}{2}}\right)\Gamma \left({\frac {\mu -\nu +1}{2}}\right)\left(\sin \left[(\mu -\nu ){\frac {\pi }{2}}\right]J_{\nu }(z)-\cos \left[(\mu -\nu ){\frac {\pi }{2}}\right]Y_{\nu }(z)\right),}where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.
The s function can also be written as
s μ , ν ( z ) = z μ + 1 ( μ − ν + 1 ) ( μ + ν + 1 ) 1 F 2 ( 1 ; μ 2 − ν 2 + 3 2 , μ 2 + ν 2 + 3 2 ; − z 2 4 ) , {\displaystyle s_{\mu ,\nu }(z)={\frac {z^{\mu +1}}{(\mu -\nu +1)(\mu +\nu +1)}}{}_{1}F_{2}(1;{\frac {\mu }{2}}-{\frac {\nu }{2}}+{\frac {3}{2}},{\frac {\mu }{2}}+{\frac {\nu }{2}}+{\frac {3}{2}};-{\frac {z^{2}}{4}}),}where pFq is a generalized hypergeometric function.
Related Image Collections
Add Image
We don't have any YouTube videos related to Lommel function yet.
You can add one yourself here.
We don't have any PDF documents related to Lommel function yet.
You can add one yourself here.
We don't have any Books related to Lommel function yet.
You can add one yourself here.
We don't have any archived web articles related to Lommel function yet.
See also
- Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1953), Higher transcendental functions. Vol II (PDF), McGraw-Hill Book Company, Inc., New York-Toronto-London, MR 0058756
- Lommel, E. (1875), "Ueber eine mit den Bessel'schen Functionen verwandte Function", Math. Ann., 9 (3): 425–444, doi:10.1007/BF01443342
- Lommel, E. (1880), "Zur Theorie der Bessel'schen Funktionen IV", Math. Ann., 16 (2): 183–208, doi:10.1007/BF01446386
- Paris, R. B. (2010), "Lommel function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Solomentsev, E.D. (2001) [1994], "Lommel function", Encyclopedia of Mathematics, EMS Press
External links
- Weisstein, Eric W. "Lommel Differential Equation." From MathWorld—A Wolfram Web Resource.
- Weisstein, Eric W. "Lommel Function." From MathWorld—A Wolfram Web Resource.
References
Watson's "Treatise on the Theory of Bessel functions" (1966), Section 10.7, Equation (10) ↩