Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Lommel function
Physics function introduced by Eugen von Lommel

The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:

z 2 d 2 y d z 2 + z d y d z + ( z 2 − ν 2 ) y = z μ + 1 . {\displaystyle z^{2}{\frac {d^{2}y}{dz^{2}}}+z{\frac {dy}{dz}}+(z^{2}-\nu ^{2})y=z^{\mu +1}.}

Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),

s μ , ν ( z ) = π 2 [ Y ν ( z ) ∫ 0 z x μ J ν ( x ) d x − J ν ( z ) ∫ 0 z x μ Y ν ( x ) d x ] , {\displaystyle s_{\mu ,\nu }(z)={\frac {\pi }{2}}\left[Y_{\nu }(z)\!\int _{0}^{z}\!\!x^{\mu }J_{\nu }(x)\,dx-J_{\nu }(z)\!\int _{0}^{z}\!\!x^{\mu }Y_{\nu }(x)\,dx\right],} S μ , ν ( z ) = s μ , ν ( z ) + 2 μ − 1 Γ ( μ + ν + 1 2 ) Γ ( μ − ν + 1 2 ) ( sin ⁡ [ ( μ − ν ) π 2 ] J ν ( z ) − cos ⁡ [ ( μ − ν ) π 2 ] Y ν ( z ) ) , {\displaystyle S_{\mu ,\nu }(z)=s_{\mu ,\nu }(z)+2^{\mu -1}\Gamma \left({\frac {\mu +\nu +1}{2}}\right)\Gamma \left({\frac {\mu -\nu +1}{2}}\right)\left(\sin \left[(\mu -\nu ){\frac {\pi }{2}}\right]J_{\nu }(z)-\cos \left[(\mu -\nu ){\frac {\pi }{2}}\right]Y_{\nu }(z)\right),}

where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.

The s function can also be written as

s μ , ν ( z ) = z μ + 1 ( μ − ν + 1 ) ( μ + ν + 1 ) 1 F 2 ( 1 ; μ 2 − ν 2 + 3 2 , μ 2 + ν 2 + 3 2 ; − z 2 4 ) , {\displaystyle s_{\mu ,\nu }(z)={\frac {z^{\mu +1}}{(\mu -\nu +1)(\mu +\nu +1)}}{}_{1}F_{2}(1;{\frac {\mu }{2}}-{\frac {\nu }{2}}+{\frac {3}{2}},{\frac {\mu }{2}}+{\frac {\nu }{2}}+{\frac {3}{2}};-{\frac {z^{2}}{4}}),}

where pFq is a generalized hypergeometric function.

Related Image Collections Add Image
We don't have any YouTube videos related to Lommel function yet.
We don't have any PDF documents related to Lommel function yet.
We don't have any Books related to Lommel function yet.
We don't have any archived web articles related to Lommel function yet.

See also

References

  1. Watson's "Treatise on the Theory of Bessel functions" (1966), Section 10.7, Equation (10)