Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Matrix analytic method

In probability theory, the matrix analytic method is a technique to compute the stationary probability distribution of a Markov chain which has a repeating structure (after some point) and a state space which grows unboundedly in no more than one dimension. Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains.

We don't have any images related to Matrix analytic method yet.
We don't have any YouTube videos related to Matrix analytic method yet.
We don't have any PDF documents related to Matrix analytic method yet.
We don't have any Books related to Matrix analytic method yet.
We don't have any archived web articles related to Matrix analytic method yet.

Method description

An M/G/1-type stochastic matrix is one of the form6

P = ( B 0 B 1 B 2 B 3 ⋯ A 0 A 1 A 2 A 3 ⋯ A 0 A 1 A 2 ⋯ A 0 A 1 ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ) {\displaystyle P={\begin{pmatrix}B_{0}&B_{1}&B_{2}&B_{3}&\cdots \\A_{0}&A_{1}&A_{2}&A_{3}&\cdots \\&A_{0}&A_{1}&A_{2}&\cdots \\&&A_{0}&A_{1}&\cdots \\\vdots &\vdots &\vdots &\vdots &\ddots \end{pmatrix}}}

where Bi and Ai are k × k matrices. (Note that unmarked matrix entries represent zeroes.) Such a matrix describes the embedded Markov chain in an M/G/1 queue.78 If P is irreducible and positive recurrent then the stationary distribution is given by the solution to the equations9

P π = π  and  e T π = 1 {\displaystyle P\pi =\pi \quad {\text{ and }}\quad \mathbf {e} ^{\text{T}}\pi =1}

where e represents a vector of suitable dimension with all values equal to 1. Matching the structure of P, π is partitioned to π1, π2, π3, …. To compute these probabilities the column stochastic matrix G is computed such that10

G = ∑ i = 0 ∞ G i A i . {\displaystyle G=\sum _{i=0}^{\infty }G^{i}A_{i}.}

G is called the auxiliary matrix.11 Matrices are defined12

A ¯ i + 1 = ∑ j = i + 1 ∞ G j − i − 1 A j B ¯ i = ∑ j = i ∞ G j − i B j {\displaystyle {\begin{aligned}{\overline {A}}_{i+1}&=\sum _{j=i+1}^{\infty }G^{j-i-1}A_{j}\\{\overline {B}}_{i}&=\sum _{j=i}^{\infty }G^{j-i}B_{j}\end{aligned}}}

then π0 is found by solving13

B ¯ 0 π 0 = π 0 ( e T + e T ( I − ∑ i = 1 ∞ A ¯ i ) − 1 ∑ i = 1 ∞ B ¯ i ) π 0 = 1 {\displaystyle {\begin{aligned}{\overline {B}}_{0}\pi _{0}&=\pi _{0}\\\quad \left(\mathbf {e} ^{\text{T}}+\mathbf {e} ^{\text{T}}\left(I-\sum _{i=1}^{\infty }{\overline {A}}_{i}\right)^{-1}\sum _{i=1}^{\infty }{\overline {B}}_{i}\right)\pi _{0}&=1\end{aligned}}}

and the πi are given by Ramaswami's formula,14 a numerically stable relationship first published by Vaidyanathan Ramaswami in 1988.15

π i = ( I − A ¯ 1 ) − 1 [ B ¯ i + 1 π 0 + ∑ j = 1 i − 1 A ¯ i + 1 − j π j ] , i ≥ 1. {\displaystyle \pi _{i}=(I-{\overline {A}}_{1})^{-1}\left[{\overline {B}}_{i+1}\pi _{0}+\sum _{j=1}^{i-1}{\overline {A}}_{i+1-j}\pi _{j}\right],i\geq 1.}

Computation of G

There are two popular iterative methods for computing G,1617

Tools

References

  1. Harchol-Balter, M. (2012). "Phase-Type Distributions and Matrix-Analytic Methods". Performance Modeling and Design of Computer Systems. pp. 359–379. doi:10.1017/CBO9781139226424.028. ISBN 9781139226424. 9781139226424

  2. Neuts, M. F. (1984). "Matrix-analytic methods in queuing theory". European Journal of Operational Research. 15: 2–12. doi:10.1016/0377-2217(84)90034-1. /wiki/Doi_(identifier)

  3. Meini, B. (1997). "An improved FFT-based version of Ramaswami's formula". Communications in Statistics. Stochastic Models. 13 (2): 223–238. doi:10.1080/15326349708807423. /wiki/Beatrice_Meini

  4. Stathopoulos, A.; Riska, A.; Hua, Z.; Smirni, E. (2005). "Bridging ETAQA and Ramaswami's formula for the solution of M/G/1-type processes". Performance Evaluation. 62 (1–4): 331–348. CiteSeerX 10.1.1.80.9473. doi:10.1016/j.peva.2005.07.003. /wiki/Evgenia_Smirni

  5. Riska, A.; Smirni, E. (2002). "M/G/1-Type Markov Processes: A Tutorial" (PDF). Performance Evaluation of Complex Systems: Techniques and Tools. Lecture Notes in Computer Science. Vol. 2459. pp. 36. doi:10.1007/3-540-45798-4_3. ISBN 978-3-540-44252-3. 978-3-540-44252-3

  6. Meini, B. (1997). "An improved FFT-based version of Ramaswami's formula". Communications in Statistics. Stochastic Models. 13 (2): 223–238. doi:10.1080/15326349708807423. /wiki/Beatrice_Meini

  7. Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Shridharbhai Trivedi, Kishor (2006). Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (2 ed.). John Wiley & Sons, Inc. p. 250. ISBN 978-0471565253. 978-0471565253

  8. Artalejo, Jesús R.; Gómez-Corral, Antonio (2008). "The Matrix-Analytic Formalism". Retrial Queueing Systems. pp. 187–205. doi:10.1007/978-3-540-78725-9_7. ISBN 978-3-540-78724-2. 978-3-540-78724-2

  9. Meini, B. (1997). "An improved FFT-based version of Ramaswami's formula". Communications in Statistics. Stochastic Models. 13 (2): 223–238. doi:10.1080/15326349708807423. /wiki/Beatrice_Meini

  10. Meini, B. (1997). "An improved FFT-based version of Ramaswami's formula". Communications in Statistics. Stochastic Models. 13 (2): 223–238. doi:10.1080/15326349708807423. /wiki/Beatrice_Meini

  11. Riska, A.; Smirni, E. (2002). "Exact aggregate solutions for M/G/1-type Markov processes". ACM SIGMETRICS Performance Evaluation Review. 30: 86. CiteSeerX 10.1.1.109.2225. doi:10.1145/511399.511346. /wiki/Evgenia_Smirni

  12. Meini, B. (1997). "An improved FFT-based version of Ramaswami's formula". Communications in Statistics. Stochastic Models. 13 (2): 223–238. doi:10.1080/15326349708807423. /wiki/Beatrice_Meini

  13. Meini, B. (1997). "An improved FFT-based version of Ramaswami's formula". Communications in Statistics. Stochastic Models. 13 (2): 223–238. doi:10.1080/15326349708807423. /wiki/Beatrice_Meini

  14. Meini, B. (1997). "An improved FFT-based version of Ramaswami's formula". Communications in Statistics. Stochastic Models. 13 (2): 223–238. doi:10.1080/15326349708807423. /wiki/Beatrice_Meini

  15. Ramaswami, V. (1988). "A stable recursion for the steady state vector in markov chains of m/g/1 type". Communications in Statistics. Stochastic Models. 4: 183–188. doi:10.1080/15326348808807077. /wiki/Doi_(identifier)

  16. Bini, D. A.; Latouche, G.; Meini, B. (2005). Numerical Methods for Structured Markov Chains. doi:10.1093/acprof:oso/9780198527688.001.0001. ISBN 9780198527688. 9780198527688

  17. Meini, B. (1998). "Solving m/g/l type markov chains: Recent advances and applications". Communications in Statistics. Stochastic Models. 14 (1–2): 479–496. doi:10.1080/15326349808807483. /wiki/Beatrice_Meini

  18. Riska, A.; Smirni, E. (2002). "MAMSolver: A Matrix Analytic Methods Tool". Computer Performance Evaluation: Modelling Techniques and Tools. Lecture Notes in Computer Science. Vol. 2324. p. 205. CiteSeerX 10.1.1.146.2080. doi:10.1007/3-540-46029-2_14. ISBN 978-3-540-43539-6. 978-3-540-43539-6