In linear algebra, the modal matrix is used in the diagonalization process involving eigenvalues and eigenvectors.
Specifically the modal matrix M {\displaystyle M} for the matrix A {\displaystyle A} is the n × n matrix formed with the eigenvectors of A {\displaystyle A} as columns in M {\displaystyle M} . It is utilized in the similarity transformation
D = M − 1 A M , {\displaystyle D=M^{-1}AM,}where D {\displaystyle D} is an n × n diagonal matrix with the eigenvalues of A {\displaystyle A} on the main diagonal of D {\displaystyle D} and zeros elsewhere. The matrix D {\displaystyle D} is called the spectral matrix for A {\displaystyle A} . The eigenvalues must appear left to right, top to bottom in the same order as their corresponding eigenvectors are arranged left to right in M {\displaystyle M} .
Example
The matrix
A = ( 3 2 0 2 0 0 1 0 2 ) {\displaystyle A={\begin{pmatrix}3&2&0\\2&0&0\\1&0&2\end{pmatrix}}}has eigenvalues and corresponding eigenvectors
λ 1 = − 1 , b 1 = ( − 3 , 6 , 1 ) , {\displaystyle \lambda _{1}=-1,\quad \,\mathbf {b} _{1}=\left(-3,6,1\right),} λ 2 = 2 , b 2 = ( 0 , 0 , 1 ) , {\displaystyle \lambda _{2}=2,\qquad \mathbf {b} _{2}=\left(0,0,1\right),} λ 3 = 4 , b 3 = ( 2 , 1 , 1 ) . {\displaystyle \lambda _{3}=4,\qquad \mathbf {b} _{3}=\left(2,1,1\right).}A diagonal matrix D {\displaystyle D} , similar to A {\displaystyle A} is
D = ( − 1 0 0 0 2 0 0 0 4 ) . {\displaystyle D={\begin{pmatrix}-1&0&0\\0&2&0\\0&0&4\end{pmatrix}}.}One possible choice for an invertible matrix M {\displaystyle M} such that D = M − 1 A M , {\displaystyle D=M^{-1}AM,} is
M = ( − 3 0 2 6 0 1 1 1 1 ) . {\displaystyle M={\begin{pmatrix}-3&0&2\\6&0&1\\1&1&1\end{pmatrix}}.} 3Note that since eigenvectors themselves are not unique, and since the columns of both M {\displaystyle M} and D {\displaystyle D} may be interchanged, it follows that both M {\displaystyle M} and D {\displaystyle D} are not unique.4
Generalized modal matrix
Let A {\displaystyle A} be an n × n matrix. A generalized modal matrix M {\displaystyle M} for A {\displaystyle A} is an n × n matrix whose columns, considered as vectors, form a canonical basis for A {\displaystyle A} and appear in M {\displaystyle M} according to the following rules:
- All Jordan chains consisting of one vector (that is, one vector in length) appear in the first columns of M {\displaystyle M} .
- All vectors of one chain appear together in adjacent columns of M {\displaystyle M} .
- Each chain appears in M {\displaystyle M} in order of increasing rank (that is, the generalized eigenvector of rank 1 appears before the generalized eigenvector of rank 2 of the same chain, which appears before the generalized eigenvector of rank 3 of the same chain, etc.).5
One can show that
A M = M J , {\displaystyle AM=MJ,} | 1 |
where J {\displaystyle J} is a matrix in Jordan normal form. By premultiplying by M − 1 {\displaystyle M^{-1}} , we obtain
J = M − 1 A M . {\displaystyle J=M^{-1}AM.} | 2 |
Note that when computing these matrices, equation (1) is the easiest of the two equations to verify, since it does not require inverting a matrix.6
Example
This example illustrates a generalized modal matrix with four Jordan chains. Unfortunately, it is a little difficult to construct an interesting example of low order.7 The matrix
A = ( − 1 0 − 1 1 1 3 0 0 1 0 0 0 0 0 2 1 2 − 1 − 1 − 6 0 − 2 0 − 1 2 1 3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 − 1 − 1 0 1 2 4 1 ) {\displaystyle A={\begin{pmatrix}-1&0&-1&1&1&3&0\\0&1&0&0&0&0&0\\2&1&2&-1&-1&-6&0\\-2&0&-1&2&1&3&0\\0&0&0&0&1&0&0\\0&0&0&0&0&1&0\\-1&-1&0&1&2&4&1\end{pmatrix}}}has a single eigenvalue λ 1 = 1 {\displaystyle \lambda _{1}=1} with algebraic multiplicity μ 1 = 7 {\displaystyle \mu _{1}=7} . A canonical basis for A {\displaystyle A} will consist of one linearly independent generalized eigenvector of rank 3 (generalized eigenvector rank; see generalized eigenvector), two of rank 2 and four of rank 1; or equivalently, one chain of three vectors { x 3 , x 2 , x 1 } {\displaystyle \left\{\mathbf {x} _{3},\mathbf {x} _{2},\mathbf {x} _{1}\right\}} , one chain of two vectors { y 2 , y 1 } {\displaystyle \left\{\mathbf {y} _{2},\mathbf {y} _{1}\right\}} , and two chains of one vector { z 1 } {\displaystyle \left\{\mathbf {z} _{1}\right\}} , { w 1 } {\displaystyle \left\{\mathbf {w} _{1}\right\}} .
An "almost diagonal" matrix J {\displaystyle J} in Jordan normal form, similar to A {\displaystyle A} is obtained as follows:
M = ( z 1 w 1 x 1 x 2 x 3 y 1 y 2 ) = ( 0 1 − 1 0 0 − 2 1 0 3 0 0 1 0 0 − 1 1 1 1 0 2 0 − 2 0 − 1 0 0 − 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 − 1 0 − 1 0 ) , {\displaystyle M={\begin{pmatrix}\mathbf {z} _{1}&\mathbf {w} _{1}&\mathbf {x} _{1}&\mathbf {x} _{2}&\mathbf {x} _{3}&\mathbf {y} _{1}&\mathbf {y} _{2}\end{pmatrix}}={\begin{pmatrix}0&1&-1&0&0&-2&1\\0&3&0&0&1&0&0\\-1&1&1&1&0&2&0\\-2&0&-1&0&0&-2&0\\1&0&0&0&0&0&0\\0&1&0&0&0&0&0\\0&0&0&-1&0&-1&0\end{pmatrix}},} J = ( 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 ) , {\displaystyle J={\begin{pmatrix}1&0&0&0&0&0&0\\0&1&0&0&0&0&0\\0&0&1&1&0&0&0\\0&0&0&1&1&0&0\\0&0&0&0&1&0&0\\0&0&0&0&0&1&1\\0&0&0&0&0&0&1\end{pmatrix}},}where M {\displaystyle M} is a generalized modal matrix for A {\displaystyle A} , the columns of M {\displaystyle M} are a canonical basis for A {\displaystyle A} , and A M = M J {\displaystyle AM=MJ} .8 Note that since generalized eigenvectors themselves are not unique, and since some of the columns of both M {\displaystyle M} and J {\displaystyle J} may be interchanged, it follows that both M {\displaystyle M} and J {\displaystyle J} are not unique.9
Notes
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
- Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646
References
Bronson (1970, pp. 179–183) - Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490 https://lccn.loc.gov/70097490 ↩
Bronson (1970, p. 181) - Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490 https://lccn.loc.gov/70097490 ↩
Beauregard & Fraleigh (1973, pp. 271, 272) - Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X https://archive.org/details/firstcourseinlin0000beau ↩
Bronson (1970, p. 181) - Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490 https://lccn.loc.gov/70097490 ↩
Bronson (1970, p. 205) - Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490 https://lccn.loc.gov/70097490 ↩
Bronson (1970, pp. 206–207) - Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490 https://lccn.loc.gov/70097490 ↩
Nering (1970, pp. 122, 123) - Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646 https://lccn.loc.gov/76091646 ↩
Bronson (1970, pp. 208, 209) - Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490 https://lccn.loc.gov/70097490 ↩
Bronson (1970, p. 206) - Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490 https://lccn.loc.gov/70097490 ↩