In statistics, a multivariate Pareto distribution is a multivariate extension of a univariate Pareto distribution.
There are several different types of univariate Pareto distributions including Pareto Types I−IV and Feller−Pareto. Multivariate Pareto distributions have been defined for many of these types.
Bivariate Pareto distributions
Bivariate Pareto distribution of the first kind
Mardia (1962)3 defined a bivariate distribution with cumulative distribution function (CDF) given by
F ( x 1 , x 2 ) = 1 − ∑ i = 1 2 ( x i θ i ) − a + ( ∑ i = 1 2 x i θ i − 1 ) − a , x i > θ i > 0 , i = 1 , 2 ; a > 0 , {\displaystyle F(x_{1},x_{2})=1-\sum _{i=1}^{2}\left({\frac {x_{i}}{\theta _{i}}}\right)^{-a}+\left(\sum _{i=1}^{2}{\frac {x_{i}}{\theta _{i}}}-1\right)^{-a},\qquad x_{i}>\theta _{i}>0,i=1,2;a>0,}and joint density function
f ( x 1 , x 2 ) = ( a + 1 ) a ( θ 1 θ 2 ) a + 1 ( θ 2 x 1 + θ 1 x 2 − θ 1 θ 2 ) − ( a + 2 ) , x i ≥ θ i > 0 , i = 1 , 2 ; a > 0. {\displaystyle f(x_{1},x_{2})=(a+1)a(\theta _{1}\theta _{2})^{a+1}(\theta _{2}x_{1}+\theta _{1}x_{2}-\theta _{1}\theta _{2})^{-(a+2)},\qquad x_{i}\geq \theta _{i}>0,i=1,2;a>0.}The marginal distributions are Pareto Type 1 with density functions
f ( x i ) = a θ i a x i − ( a + 1 ) , x i ≥ θ i > 0 , i = 1 , 2. {\displaystyle f(x_{i})=a\theta _{i}^{a}x_{i}^{-(a+1)},\qquad x_{i}\geq \theta _{i}>0,i=1,2.}The means and variances of the marginal distributions are
E [ X i ] = a θ i a − 1 , a > 1 ; V a r ( X i ) = a θ i 2 ( a − 1 ) 2 ( a − 2 ) , a > 2 ; i = 1 , 2 , {\displaystyle E[X_{i}]={\frac {a\theta _{i}}{a-1}},a>1;\quad Var(X_{i})={\frac {a\theta _{i}^{2}}{(a-1)^{2}(a-2)}},a>2;\quad i=1,2,}and for a > 2, X1 and X2 are positively correlated with
cov ( X 1 , X 2 ) = θ 1 θ 2 ( a − 1 ) 2 ( a − 2 ) , and cor ( X 1 , X 2 ) = 1 a . {\displaystyle \operatorname {cov} (X_{1},X_{2})={\frac {\theta _{1}\theta _{2}}{(a-1)^{2}(a-2)}},{\text{ and }}\operatorname {cor} (X_{1},X_{2})={\frac {1}{a}}.}Bivariate Pareto distribution of the second kind
Arnold4 suggests representing the bivariate Pareto Type I complementary CDF by
F ¯ ( x 1 , x 2 ) = ( 1 + ∑ i = 1 2 x i − θ i θ i ) − a , x i > θ i , i = 1 , 2. {\displaystyle {\overline {F}}(x_{1},x_{2})=\left(1+\sum _{i=1}^{2}{\frac {x_{i}-\theta _{i}}{\theta _{i}}}\right)^{-a},\qquad x_{i}>\theta _{i},i=1,2.}If the location and scale parameter are allowed to differ, the complementary CDF is
F ¯ ( x 1 , x 2 ) = ( 1 + ∑ i = 1 2 x i − μ i σ i ) − a , x i > μ i , i = 1 , 2 , {\displaystyle {\overline {F}}(x_{1},x_{2})=\left(1+\sum _{i=1}^{2}{\frac {x_{i}-\mu _{i}}{\sigma _{i}}}\right)^{-a},\qquad x_{i}>\mu _{i},i=1,2,}which has Pareto Type II univariate marginal distributions. This distribution is called a multivariate Pareto distribution of type II by Arnold.5 (This definition is not equivalent to Mardia's bivariate Pareto distribution of the second kind.)6
For a > 1, the marginal means are
E [ X i ] = μ i + σ i a − 1 , i = 1 , 2 , {\displaystyle E[X_{i}]=\mu _{i}+{\frac {\sigma _{i}}{a-1}},\qquad i=1,2,}while for a > 2, the variances, covariance, and correlation are the same as for multivariate Pareto of the first kind.
Multivariate Pareto distributions
Multivariate Pareto distribution of the first kind
Mardia's7 Multivariate Pareto distribution of the First Kind has the joint probability density function given by
f ( x 1 , … , x k ) = a ( a + 1 ) ⋯ ( a + k − 1 ) ( ∏ i = 1 k θ i ) − 1 ( ∑ i = 1 k x i θ i − k + 1 ) − ( a + k ) , x i > θ i > 0 , a > 0 , ( 1 ) {\displaystyle f(x_{1},\dots ,x_{k})=a(a+1)\cdots (a+k-1)\left(\prod _{i=1}^{k}\theta _{i}\right)^{-1}\left(\sum _{i=1}^{k}{\frac {x_{i}}{\theta _{i}}}-k+1\right)^{-(a+k)},\qquad x_{i}>\theta _{i}>0,a>0,\qquad (1)}The marginal distributions have the same form as (1), and the one-dimensional marginal distributions have a Pareto Type I distribution. The complementary CDF is
F ¯ ( x 1 , … , x k ) = ( ∑ i = 1 k x i θ i − k + 1 ) − a , x i > θ i > 0 , i = 1 , … , k ; a > 0. ( 2 ) {\displaystyle {\overline {F}}(x_{1},\dots ,x_{k})=\left(\sum _{i=1}^{k}{\frac {x_{i}}{\theta _{i}}}-k+1\right)^{-a},\qquad x_{i}>\theta _{i}>0,i=1,\dots ,k;a>0.\quad (2)}The marginal means and variances are given by
E [ X i ] = a θ i a − 1 , for a > 1 , and V a r ( X i ) = a θ i 2 ( a − 1 ) 2 ( a − 2 ) , for a > 2. {\displaystyle E[X_{i}]={\frac {a\theta _{i}}{a-1}},{\text{ for }}a>1,{\text{ and }}Var(X_{i})={\frac {a\theta _{i}^{2}}{(a-1)^{2}(a-2)}},{\text{ for }}a>2.}If a > 2 the covariances and correlations are positive with
cov ( X i , X j ) = θ i θ j ( a − 1 ) 2 ( a − 2 ) , cor ( X i , X j ) = 1 a , i ≠ j . {\displaystyle \operatorname {cov} (X_{i},X_{j})={\frac {\theta _{i}\theta _{j}}{(a-1)^{2}(a-2)}},\qquad \operatorname {cor} (X_{i},X_{j})={\frac {1}{a}},\qquad i\neq j.}Multivariate Pareto distribution of the second kind
Arnold8 suggests representing the multivariate Pareto Type I complementary CDF by
F ¯ ( x 1 , … , x k ) = ( 1 + ∑ i = 1 k x i − θ i θ i ) − a , x i > θ i > 0 , i = 1 , … , k . {\displaystyle {\overline {F}}(x_{1},\dots ,x_{k})=\left(1+\sum _{i=1}^{k}{\frac {x_{i}-\theta _{i}}{\theta _{i}}}\right)^{-a},\qquad x_{i}>\theta _{i}>0,\quad i=1,\dots ,k.}If the location and scale parameter are allowed to differ, the complementary CDF is
F ¯ ( x 1 , … , x k ) = ( 1 + ∑ i = 1 k x i − μ i σ i ) − a , x i > μ i , i = 1 , … , k , ( 3 ) {\displaystyle {\overline {F}}(x_{1},\dots ,x_{k})=\left(1+\sum _{i=1}^{k}{\frac {x_{i}-\mu _{i}}{\sigma _{i}}}\right)^{-a},\qquad x_{i}>\mu _{i},\quad i=1,\dots ,k,\qquad (3)}which has marginal distributions of the same type (3) and Pareto Type II univariate marginal distributions. This distribution is called a multivariate Pareto distribution of type II by Arnold.9
For a > 1, the marginal means are
E [ X i ] = μ i + σ i a − 1 , i = 1 , … , k , {\displaystyle E[X_{i}]=\mu _{i}+{\frac {\sigma _{i}}{a-1}},\qquad i=1,\dots ,k,}while for a > 2, the variances, covariances, and correlations are the same as for multivariate Pareto of the first kind.
Multivariate Pareto distribution of the fourth kind
A random vector X has a k-dimensional multivariate Pareto distribution of the Fourth Kind10 if its joint survival function is
F ¯ ( x 1 , … , x k ) = ( 1 + ∑ i = 1 k ( x i − μ i σ i ) 1 / γ i ) − a , x i > μ i , σ i > 0 , i = 1 , … , k ; a > 0. ( 4 ) {\displaystyle {\overline {F}}(x_{1},\dots ,x_{k})=\left(1+\sum _{i=1}^{k}\left({\frac {x_{i}-\mu _{i}}{\sigma _{i}}}\right)^{1/\gamma _{i}}\right)^{-a},\qquad x_{i}>\mu _{i},\sigma _{i}>0,i=1,\dots ,k;a>0.\qquad (4)}The k1-dimensional marginal distributions (k1<k) are of the same type as (4), and the one-dimensional marginal distributions are Pareto Type IV.
Multivariate Feller–Pareto distribution
A random vector X has a k-dimensional Feller–Pareto distribution if
X i = μ i + ( W i / Z ) γ i , i = 1 , … , k , ( 5 ) {\displaystyle X_{i}=\mu _{i}+(W_{i}/Z)^{\gamma _{i}},\qquad i=1,\dots ,k,\qquad (5)}where
W i ∼ Γ ( β i , 1 ) , i = 1 , … , k , Z ∼ Γ ( α , 1 ) , {\displaystyle W_{i}\sim \Gamma (\beta _{i},1),\quad i=1,\dots ,k,\qquad Z\sim \Gamma (\alpha ,1),}are independent gamma variables.11 The marginal distributions and conditional distributions are of the same type (5); that is, they are multivariate Feller–Pareto distributions. The one–dimensional marginal distributions are of Feller−Pareto type.
References
S. Kotz; N. Balakrishnan; N. L. Johnson (2000). "52". Continuous Multivariate Distributions. Vol. 1 (second ed.). ISBN 0-471-18387-3. 0-471-18387-3 ↩
Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 3. 0-89974-012-X ↩
Mardia, K. V. (1962). "Multivariate Pareto distributions". Annals of Mathematical Statistics. 33 (3): 1008–1015. doi:10.1214/aoms/1177704468. https://doi.org/10.1214%2Faoms%2F1177704468 ↩
Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 6. 0-89974-012-X ↩
Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 6. 0-89974-012-X ↩
Mardia, K. V. (1962). "Multivariate Pareto distributions". Annals of Mathematical Statistics. 33 (3): 1008–1015. doi:10.1214/aoms/1177704468. https://doi.org/10.1214%2Faoms%2F1177704468 ↩
Mardia, K. V. (1962). "Multivariate Pareto distributions". Annals of Mathematical Statistics. 33 (3): 1008–1015. doi:10.1214/aoms/1177704468. https://doi.org/10.1214%2Faoms%2F1177704468 ↩
Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 6. 0-89974-012-X ↩
Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 6. 0-89974-012-X ↩
Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 6. 0-89974-012-X ↩
Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-012-X. Chapter 6. 0-89974-012-X ↩