Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Narrow-gap semiconductor
All semiconductors with bandgaps smaller than that of silicon

Narrow-gap semiconductors are semiconducting materials with a magnitude of bandgap that is smaller than 0.7 eV, which corresponds to an infrared absorption cut-off wavelength over 2.5 micron. A more extended definition includes all semiconductors with bandgaps smaller than silicon (1.1 eV). Modern terahertz, infrared, and thermographic technologies are all based on this class of semiconductors.

Narrow-gap materials made it possible to realize satellite remote sensing, photonic integrated circuits for telecommunications, and unmanned vehicle Li-Fi systems, in the regime of Infrared detector and thermography. They are also the materials basis for terahertz technology, including security surveillance of concealed weapon uncovering, safe medical and industrial imaging with terahertz tomography, as well as dielectric wakefield accelerators. Besides, thermophotovoltaics embedded with narrow-gap semiconductors can potentially use the traditionally wasted portion of solar energy that takes up ~49% of the sun light spectrum. Spacecraft, deep ocean instruments, and vacuum physics setups use narrow-gap semiconductors to achieve cryogenic cooling.

We don't have any images related to Narrow-gap semiconductor yet.
We don't have any YouTube videos related to Narrow-gap semiconductor yet.
We don't have any PDF documents related to Narrow-gap semiconductor yet.
We don't have any Books related to Narrow-gap semiconductor yet.
We don't have any archived web articles related to Narrow-gap semiconductor yet.

List of narrow-gap semiconductors

NameChemical formulaGroupsBand gap (300 K)
Mercury cadmium tellurideHg1−xCdxTeII-VI0 to 1.5 eV
Mercury zinc tellurideHg1−xZnxTeII-VI0.15 to 2.25 eV
Lead selenidePbSeIV-VI0.27 eV
Lead(II) sulfidePbSIV-VI0.37 eV
TeleniumTeVI~0.3 eV
Lead telluridePbTeIV-VI0.32 eV
MagnetiteFe3O4Transition Metal-VI0.14 eV
Indium arsenideInAsIII-V0.354 eV
Indium antimonideInSbIII-V0.17 eV
GermaniumGeIV0.67 eV
Gallium antimonideGaSbIII-V0.67 eV
Cadmium arsenideCd3As2II-V0.5 to 0.6 eV
Bismuth tellurideBi2Te30.21 eV
Tin tellurideSnTeIV-VI0.18 eV
Tin selenideSnSeIV-VI0.9 eV
Silver(I) selenideAg2Se0.07 eV
Magnesium silicideMg2SiII-IV0.79 eV26

See also

Further reading

References

  1. Li, Xiao-Hui (2022). "Narrow-Bandgap Materials for Optoelectronics Applications". Frontiers of Physics. 17 (1): 13304. Bibcode:2022FrPhy..1713304L. doi:10.1007/s11467-021-1055-z. S2CID 237652629. https://link.springer.com/article/10.1007/s11467-021-1055-z

  2. Chu, Junhao; Sher, Arden (2008). Physics and Properties of Narrow Gap Semiconductors. Springer. doi:10.1007/978-0-387-74801-6. ISBN 978-0-387-74743-9. 978-0-387-74743-9

  3. Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2007). National Association of Broadcasters Engineering Handbook. Taylor and Francis. p. 7. ISBN 978-1-136-03410-7. 978-1-136-03410-7

  4. Avraham, M.; Nemirovsky, J.; Blank, T.; Golan, G.; Nemirovsky, Y. (2022). "Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS". Micromachines. 13 (5): 703. doi:10.3390/mi13050703. PMC 9145132. PMID 35630174. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145132

  5. Hapke B (19 January 2012). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press. p. 416. ISBN 978-0-521-88349-8. 978-0-521-88349-8

  6. Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.

  7. Inside Telecom Staff (30 July 2022). "How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure?". Inside Telecom. Retrieved 20 September 2022. https://insidetelecom.com/how-can-photonic-chips-help-to-create-a-sustainable-digital-infrastructure/

  8. Awad, Ehab (October 2018). "Bidirectional Mode Slicing and Re-Combining for Mode Conversion in Planar Waveguides". IEEE Access. 6 (1): 55937. doi:10.1109/ACCESS.2018.2873278. S2CID 53043619. https://doi.org/10.1109%2FACCESS.2018.2873278

  9. Vergyris, Panagiotis (16 June 2022). "Integrated photonics for quantum applications". Laser Focus World. Retrieved 20 September 2022. https://www.laserfocusworld.com/optics/article/14282714/integrated-photonics-for-quantum-applications

  10. "Comprehensive Summary of Modulation Techniques for LiFi | LiFi Research". www.lifi.eng.ed.ac.uk. Retrieved 2018-01-16. https://www.lifi.eng.ed.ac.uk/lifi-news/2017-04-01-1855/comprehensive-summary-modulation-techniques-lifi

  11. "The Infrared Array Camera (IRAC)". Spitzer Space Telescope. NASA / JPL / Caltech. Archived from the original on 13 June 2010. Retrieved 13 January 2017. https://web.archive.org/web/20100613233239/http://spitzer.caltech.edu/mission/398-The-Infrared-Array-Camera-IRAC-

  12. Szondy, David (28 August 2016). "Spitzer goes "Beyond" for final mission". New Atlas. Retrieved 13 January 2017. http://newatlas.com/spitzer-beyond/45123/

  13. "Space in Images – 2002–06 – Meeting the team". http://www.esa.int/spaceinimages/Images/2002/06/Meeting_the_team

  14. "Space camera blazes new terahertz trails". Times Higher Education (THE). 2003-02-12. Retrieved 2023-08-04. https://www.timeshighereducation.com/news/space-camera-blazes-new-terahertz-trails/174657.article

  15. Winner of the 2003/04 Research Councils' Business Plan Competition – 24 February 2004. epsrc.ac.uk. 27 February 2004 https://web.archive.org/web/20140315232115/http://www.epsrc.ac.uk/newsevents/news/2004/Pages/rcukbusinessplan.aspx

  16. Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. (2014). "Review of Terahertz Tomography Techniques". Journal of Infrared, Millimeter, and Terahertz Waves. 35 (4): 382–411. Bibcode:2014JIMTW..35..382G. CiteSeerX 10.1.1.480.4173. doi:10.1007/s10762-014-0057-0. S2CID 120535020. /wiki/Bibcode_(identifier)

  17. Mittleman, Daniel M.; Hunsche, Stefan; Boivin, Luc; Nuss, Martin C. (1997). "T-ray tomography". Optics Letters. 22 (12): 904–906. Bibcode:1997OptL...22..904M. doi:10.1364/OL.22.000904. ISSN 1539-4794. PMID 18185701. https://opg.optica.org/ol/abstract.cfm?uri=ol-22-12-904

  18. Katayama, I.; Akai, R.; Bito, M.; Shimosato, H.; Miyamoto, K.; Ito, H.; Ashida, M. (2010). "Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals". Applied Physics Letters. 97 (2): 021105. Bibcode:2010ApPhL..97b1105K. doi:10.1063/1.3463452. ISSN 0003-6951. https://pubs.aip.org/apl/article/97/2/021105/339188/Ultrabroadband-terahertz-generation-using-4-N-N

  19. Dolgashev, Valery; Tantawi, Sami; Higashi, Yasuo; Spataro, Bruno (2010-10-25). "Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures". Applied Physics Letters. 97 (17): 171501. Bibcode:2010ApPhL..97q1501D. doi:10.1063/1.3505339. /wiki/Bibcode_(identifier)

  20. Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X. (2015-10-06). "Terahertz-driven linear electron acceleration". Nature Communications. 6 (1): 8486. arXiv:1411.4709. Bibcode:2015NatCo...6.8486N. doi:10.1038/ncomms9486. PMC 4600735. PMID 26439410. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600735

  21. Jing, Chunguang (2016). "Dielectric Wakefield Accelerators". Reviews of Accelerator Science and Technology. 09 (6): 127–149. Bibcode:2016RvAST...9..127J. doi:10.1142/s1793626816300061. /wiki/Bibcode_(identifier)

  22. Poortmans, Jef. "IMEC website: Photovoltaic Stacks". Archived from the original on 2007-10-13. Retrieved 2008-02-17. https://web.archive.org/web/20071013061056/http://www.imec.be/wwwinter/energy/space_main.shtml

  23. "A new heat engine with no moving parts is as efficient as a steam turbine". MIT News | Massachusetts Institute of Technology. 13 April 2022. Retrieved 2022-04-13. https://news.mit.edu/2022/thermal-heat-engine-0413

  24. Radebaugh, Ray (2009-03-31). "Cryocoolers: the state of the art and recent developments". Journal of Physics: Condensed Matter. 21 (16): 164219. Bibcode:2009JPCM...21p4219R. doi:10.1088/0953-8984/21/16/164219. ISSN 0953-8984. PMID 21825399. S2CID 22695540. https://doi.org/10.1088/0953-8984/21/16/164219

  25. Cooper, Bernard E; Hadfield, Robert H (2022-06-28). "Viewpoint: Compact cryogenics for superconducting photon detectors". Superconductor Science and Technology. 35 (8): 080501. Bibcode:2022SuScT..35h0501C. doi:10.1088/1361-6668/ac76e9. ISSN 0953-2048. S2CID 249534834. https://doi.org/10.1088/1361-6668/ac76e9

  26. Nelson, James T. (1955). "Chicago Section: 1. Electrical and optical properties of MgPSn and Mg2Si". American Journal of Physics. 23 (6). American Association of Physics Teachers (AAPT): 390. doi:10.1119/1.1934018. ISSN 0002-9505. /wiki/Doi_(identifier)