Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Neumann polynomial
Polynomial sequence

In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case α = 0 {\displaystyle \alpha =0} , are a sequence of polynomials in 1 / t {\displaystyle 1/t} used to expand functions in term of Bessel functions.

The first few polynomials are

O 0 ( α ) ( t ) = 1 t , {\displaystyle O_{0}^{(\alpha )}(t)={\frac {1}{t}},} O 1 ( α ) ( t ) = 2 α + 1 t 2 , {\displaystyle O_{1}^{(\alpha )}(t)=2{\frac {\alpha +1}{t^{2}}},} O 2 ( α ) ( t ) = 2 + α t + 4 ( 2 + α ) ( 1 + α ) t 3 , {\displaystyle O_{2}^{(\alpha )}(t)={\frac {2+\alpha }{t}}+4{\frac {(2+\alpha )(1+\alpha )}{t^{3}}},} O 3 ( α ) ( t ) = 2 ( 1 + α ) ( 3 + α ) t 2 + 8 ( 1 + α ) ( 2 + α ) ( 3 + α ) t 4 , {\displaystyle O_{3}^{(\alpha )}(t)=2{\frac {(1+\alpha )(3+\alpha )}{t^{2}}}+8{\frac {(1+\alpha )(2+\alpha )(3+\alpha )}{t^{4}}},} O 4 ( α ) ( t ) = ( 1 + α ) ( 4 + α ) 2 t + 4 ( 1 + α ) ( 2 + α ) ( 4 + α ) t 3 + 16 ( 1 + α ) ( 2 + α ) ( 3 + α ) ( 4 + α ) t 5 . {\displaystyle O_{4}^{(\alpha )}(t)={\frac {(1+\alpha )(4+\alpha )}{2t}}+4{\frac {(1+\alpha )(2+\alpha )(4+\alpha )}{t^{3}}}+16{\frac {(1+\alpha )(2+\alpha )(3+\alpha )(4+\alpha )}{t^{5}}}.}

A general form for the polynomial is

O n ( α ) ( t ) = α + n 2 α ∑ k = 0 ⌊ n / 2 ⌋ ( − 1 ) n − k ( n − k ) ! k ! ( − α n − k ) ( 2 t ) n + 1 − 2 k , {\displaystyle O_{n}^{(\alpha )}(t)={\frac {\alpha +n}{2\alpha }}\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{n-k}{\frac {(n-k)!}{k!}}{-\alpha \choose n-k}\left({\frac {2}{t}}\right)^{n+1-2k},}

and they have the "generating function"

( z 2 ) α Γ ( α + 1 ) 1 t − z = ∑ n = 0 O n ( α ) ( t ) J α + n ( z ) , {\displaystyle {\frac {\left({\frac {z}{2}}\right)^{\alpha }}{\Gamma (\alpha +1)}}{\frac {1}{t-z}}=\sum _{n=0}O_{n}^{(\alpha )}(t)J_{\alpha +n}(z),}

where J are Bessel functions.

To expand a function f in the form

f ( z ) = ( 2 z ) α ∑ n = 0 a n J α + n ( z ) {\displaystyle f(z)=\left({\frac {2}{z}}\right)^{\alpha }\sum _{n=0}a_{n}J_{\alpha +n}(z)\,}

for | t | < c {\displaystyle |t|<c} , compute

a n = Γ ( α + 1 ) 2 π i ∮ | t | = c ′ f ( t ) O n ( α ) ( t ) d t , {\displaystyle a_{n}={\frac {\Gamma (\alpha +1)}{2\pi i}}\oint _{|t|=c'}f(t)O_{n}^{(\alpha )}(t)\,dt,}

where c ′ < c {\displaystyle c'<c} and c is the distance of the nearest singularity of f(z) from z = 0 {\displaystyle z=0} .

We don't have any images related to Neumann polynomial yet.
We don't have any YouTube videos related to Neumann polynomial yet.
We don't have any PDF documents related to Neumann polynomial yet.
We don't have any Books related to Neumann polynomial yet.
We don't have any archived web articles related to Neumann polynomial yet.

Examples

An example is the extension

( 1 2 z ) s = Γ ( s ) ⋅ ∑ k = 0 ( − 1 ) k J s + 2 k ( z ) ( s + 2 k ) ( − s k ) , {\displaystyle \left({\tfrac {1}{2}}z\right)^{s}=\Gamma (s)\cdot \sum _{k=0}(-1)^{k}J_{s+2k}(z)(s+2k){-s \choose k},}

or the more general Sonine formula2

e i γ z = Γ ( s ) ⋅ ∑ k = 0 i k C k ( s ) ( γ ) ( s + k ) J s + k ( z ) ( z 2 ) s . {\displaystyle e^{i\gamma z}=\Gamma (s)\cdot \sum _{k=0}i^{k}C_{k}^{(s)}(\gamma )(s+k){\frac {J_{s+k}(z)}{\left({\frac {z}{2}}\right)^{s}}}.}

where C k ( s ) {\displaystyle C_{k}^{(s)}} is Gegenbauer's polynomial. Then,[original research?]

( z 2 ) 2 k ( 2 k − 1 ) ! J s ( z ) = ∑ i = k ( − 1 ) i − k ( i + k − 1 2 k − 1 ) ( i + k + s − 1 2 k − 1 ) ( s + 2 i ) J s + 2 i ( z ) , {\displaystyle {\frac {\left({\frac {z}{2}}\right)^{2k}}{(2k-1)!}}J_{s}(z)=\sum _{i=k}(-1)^{i-k}{i+k-1 \choose 2k-1}{i+k+s-1 \choose 2k-1}(s+2i)J_{s+2i}(z),} ∑ n = 0 t n J s + n ( z ) = e t z 2 t s ∑ j = 0 ( − z 2 t ) j j ! γ ( j + s , t z 2 ) Γ ( j + s ) = ∫ 0 ∞ e − z x 2 2 t z x t J s ( z 1 − x 2 ) 1 − x 2 s d x , {\displaystyle \sum _{n=0}t^{n}J_{s+n}(z)={\frac {e^{\frac {tz}{2}}}{t^{s}}}\sum _{j=0}{\frac {\left(-{\frac {z}{2t}}\right)^{j}}{j!}}{\frac {\gamma \left(j+s,{\frac {tz}{2}}\right)}{\,\Gamma (j+s)}}=\int _{0}^{\infty }e^{-{\frac {zx^{2}}{2t}}}{\frac {zx}{t}}{\frac {J_{s}(z{\sqrt {1-x^{2}}})}{{\sqrt {1-x^{2}}}^{s}}}\,dx,}

the confluent hypergeometric function

M ( a , s , z ) = Γ ( s ) ∑ k = 0 ∞ ( − 1 t ) k L k ( − a − k ) ( t ) J s + k − 1 ( 2 t z ) ( t z ) s − k − 1 , {\displaystyle M(a,s,z)=\Gamma (s)\sum _{k=0}^{\infty }\left(-{\frac {1}{t}}\right)^{k}L_{k}^{(-a-k)}(t){\frac {J_{s+k-1}\left(2{\sqrt {tz}}\right)}{({\sqrt {tz}})^{s-k-1}}},}

and in particular

J s ( 2 z ) z s = 4 s Γ ( s + 1 2 ) π e 2 i z ∑ k = 0 L k ( − s − 1 / 2 − k ) ( i t 4 ) ( 4 i z ) k J 2 s + k ( 2 t z ) t z 2 s + k , {\displaystyle {\frac {J_{s}(2z)}{z^{s}}}={\frac {4^{s}\Gamma \left(s+{\frac {1}{2}}\right)}{\sqrt {\pi }}}e^{2iz}\sum _{k=0}L_{k}^{(-s-1/2-k)}\left({\frac {it}{4}}\right)(4iz)^{k}{\frac {J_{2s+k}\left(2{\sqrt {tz}}\right)}{{\sqrt {tz}}^{2s+k}}},}

the index shift formula

Γ ( ν − μ ) J ν ( z ) = Γ ( μ + 1 ) ∑ n = 0 Γ ( ν − μ + n ) n ! Γ ( ν + n + 1 ) ( z 2 ) ν − μ + n J μ + n ( z ) , {\displaystyle \Gamma (\nu -\mu )J_{\nu }(z)=\Gamma (\mu +1)\sum _{n=0}{\frac {\Gamma (\nu -\mu +n)}{n!\Gamma (\nu +n+1)}}\left({\frac {z}{2}}\right)^{\nu -\mu +n}J_{\mu +n}(z),}

the Taylor expansion (addition formula)

J s ( z 2 − 2 u z ) ( z 2 − 2 u z ) ± s = ∑ k = 0 ( ± u ) k k ! J s ± k ( z ) z ± s , {\displaystyle {\frac {J_{s}\left({\sqrt {z^{2}-2uz}}\right)}{\left({\sqrt {z^{2}-2uz}}\right)^{\pm s}}}=\sum _{k=0}{\frac {(\pm u)^{k}}{k!}}{\frac {J_{s\pm k}(z)}{z^{\pm s}}},}

(cf.3) and the expansion of the integral of the Bessel function,

∫ J s ( z ) d z = 2 ∑ k = 0 J s + 2 k + 1 ( z ) , {\displaystyle \int J_{s}(z)dz=2\sum _{k=0}J_{s+2k+1}(z),}

are of the same type.

See also

Notes

References

  1. Abramowitz and Stegun, p. 363, 9.1.82 ff. /wiki/Abramowitz_and_Stegun

  2. Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1955), Higher Transcendental Functions. Vols. I, II, III, McGraw-Hill, MR 0058756 II.7.10.1, p.64 /wiki/MR_(identifier)

  3. Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. "8.515.1.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. p. 944. ISBN 0-12-384933-0. LCCN 2014010276. 0-12-384933-0