Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Neville theta functions

In mathematics, the Neville theta functions, named after Eric Harold Neville, are defined as follows:

θ c ( z , m ) = 2 π q ( m ) 1 / 4 m 1 / 4 K ( m ) ∑ k = 0 ∞ ( q ( m ) ) k ( k + 1 ) cos ⁡ ( ( 2 k + 1 ) π z 2 K ( m ) ) {\displaystyle \theta _{c}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(q(m))^{k(k+1)}\cos \left({\frac {(2k+1)\pi z}{2K(m)}}\right)} θ d ( z , m ) = 2 π 2 K ( m ) ( 1 + 2 ∑ k = 1 ∞ ( q ( m ) ) k 2 cos ⁡ ( π z k K ( m ) ) ) {\displaystyle \theta _{d}(z,m)={\frac {\sqrt {2\pi }}{2{\sqrt {K(m)}}}}\,\,\left(1+2\,\sum _{k=1}^{\infty }(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)} θ n ( z , m ) = 2 π 2 ( 1 − m ) 1 / 4 K ( m ) ( 1 + 2 ∑ k = 1 ∞ ( − 1 ) k ( q ( m ) ) k 2 cos ⁡ ( π z k K ( m ) ) ) {\displaystyle \theta _{n}(z,m)={\frac {\sqrt {2\pi }}{2(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\left(1+2\sum _{k=1}^{\infty }(-1)^{k}(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)} θ s ( z , m ) = 2 π q ( m ) 1 / 4 m 1 / 4 ( 1 − m ) 1 / 4 K ( m ) ∑ k = 0 ∞ ( − 1 ) k ( q ( m ) ) k ( k + 1 ) sin ⁡ ( ( 2 k + 1 ) π z 2 K ( m ) ) {\displaystyle \theta _{s}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(-1)^{k}(q(m))^{k(k+1)}\sin \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}

where: K(m) is the complete elliptic integral of the first kind, K ′ ( m ) = K ( 1 − m ) {\displaystyle K'(m)=K(1-m)} , and q ( m ) = e − π K ′ ( m ) / K ( m ) {\displaystyle q(m)=e^{-\pi K'(m)/K(m)}} is the elliptic nome.

Note that the functions θp(z,m) are sometimes defined in terms of the nome q(m) and written θp(z,q) (e.g. NIST). The functions may also be written in terms of the τ parameter θp(z|τ) where q = e i π τ {\displaystyle q=e^{i\pi \tau }} .

We don't have any images related to Neville theta functions yet.
We don't have any YouTube videos related to Neville theta functions yet.
We don't have any PDF documents related to Neville theta functions yet.
We don't have any Books related to Neville theta functions yet.
We don't have any archived web articles related to Neville theta functions yet.

Relationship to other functions

The Neville theta functions may be expressed in terms of the Jacobi theta functions6

θ s ( z | τ ) = θ 3 2 ( 0 | τ ) θ 1 ( z ′ | τ ) / θ 1 ′ ( 0 | τ ) {\displaystyle \theta _{s}(z|\tau )=\theta _{3}^{2}(0|\tau )\theta _{1}(z'|\tau )/\theta '_{1}(0|\tau )} θ c ( z | τ ) = θ 2 ( z ′ | τ ) / θ 2 ( 0 | τ ) {\displaystyle \theta _{c}(z|\tau )=\theta _{2}(z'|\tau )/\theta _{2}(0|\tau )} θ n ( z | τ ) = θ 4 ( z ′ | τ ) / θ 4 ( 0 | τ ) {\displaystyle \theta _{n}(z|\tau )=\theta _{4}(z'|\tau )/\theta _{4}(0|\tau )} θ d ( z | τ ) = θ 3 ( z ′ | τ ) / θ 3 ( 0 | τ ) {\displaystyle \theta _{d}(z|\tau )=\theta _{3}(z'|\tau )/\theta _{3}(0|\tau )}

where z ′ = z / θ 3 2 ( 0 | τ ) {\displaystyle z'=z/\theta _{3}^{2}(0|\tau )} .

The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then

pq ⁡ ( u , m ) = θ p ( u , m ) θ q ( u , m ) . {\displaystyle \operatorname {pq} (u,m)={\frac {\theta _{p}(u,m)}{\theta _{q}(u,m)}}.}

Examples

  • θ c ( 2.5 , 0.3 ) ≈ − 0.65900466676738154967 {\displaystyle \theta _{c}(2.5,0.3)\approx -0.65900466676738154967}
  • θ d ( 2.5 , 0.3 ) ≈ 0.95182196661267561994 {\displaystyle \theta _{d}(2.5,0.3)\approx 0.95182196661267561994}
  • θ n ( 2.5 , 0.3 ) ≈ 1.0526693354651613637 {\displaystyle \theta _{n}(2.5,0.3)\approx 1.0526693354651613637}
  • θ s ( 2.5 , 0.3 ) ≈ 0.82086879524530400536 {\displaystyle \theta _{s}(2.5,0.3)\approx 0.82086879524530400536}

Symmetry

  • θ c ( z , m ) = θ c ( − z , m ) {\displaystyle \theta _{c}(z,m)=\theta _{c}(-z,m)}
  • θ d ( z , m ) = θ d ( − z , m ) {\displaystyle \theta _{d}(z,m)=\theta _{d}(-z,m)}
  • θ n ( z , m ) = θ n ( − z , m ) {\displaystyle \theta _{n}(z,m)=\theta _{n}(-z,m)}
  • θ s ( z , m ) = − θ s ( − z , m ) {\displaystyle \theta _{s}(z,m)=-\theta _{s}(-z,m)}

Complex 3D plots

Notes

References

  1. Abramowitz and Stegun, pp. 578-579

  2. Neville (1944)

  3. The Mathematical Functions Site http://functions.wolfram.com/EllipticFunctions/NevilleThetaC/02/

  4. The Mathematical Functions Site http://functions.wolfram.com/EllipticFunctions/NevilleThetaD/02/

  5. Olver, F. W. J.; et al., eds. (2017-12-22). "NIST Digital Library of Mathematical Functions (Release 1.0.17)". National Institute of Standards and Technology. Retrieved 2018-02-26. http://dlmf.nist.gov/20

  6. Olver, F. W. J.; et al., eds. (2017-12-22). "NIST Digital Library of Mathematical Functions (Release 1.0.17)". National Institute of Standards and Technology. Retrieved 2018-02-26. http://dlmf.nist.gov/20