The notion of orbit of a control system used in mathematical control theory is a particular case of the notion of orbit in group theory.
Definition
Let q ˙ = f ( q , u ) {\displaystyle {\ }{\dot {q}}=f(q,u)} be a C ∞ {\displaystyle \ {\mathcal {C}}^{\infty }} control system, where q {\displaystyle {\ q}} belongs to a finite-dimensional manifold M {\displaystyle \ M} and u {\displaystyle \ u} belongs to a control set U {\displaystyle \ U} . Consider the family F = { f ( ⋅ , u ) ∣ u ∈ U } {\displaystyle {\mathcal {F}}=\{f(\cdot ,u)\mid u\in U\}} and assume that every vector field in F {\displaystyle {\mathcal {F}}} is complete. For every f ∈ F {\displaystyle f\in {\mathcal {F}}} and every real t {\displaystyle \ t} , denote by e t f {\displaystyle \ e^{tf}} the flow of f {\displaystyle \ f} at time t {\displaystyle \ t} .
The orbit of the control system q ˙ = f ( q , u ) {\displaystyle {\ }{\dot {q}}=f(q,u)} through a point q 0 ∈ M {\displaystyle q_{0}\in M} is the subset O q 0 {\displaystyle {\mathcal {O}}_{q_{0}}} of M {\displaystyle \ M} defined by
O q 0 = { e t k f k ∘ e t k − 1 f k − 1 ∘ ⋯ ∘ e t 1 f 1 ( q 0 ) ∣ k ∈ N , t 1 , … , t k ∈ R , f 1 , … , f k ∈ F } . {\displaystyle {\mathcal {O}}_{q_{0}}=\{e^{t_{k}f_{k}}\circ e^{t_{k-1}f_{k-1}}\circ \cdots \circ e^{t_{1}f_{1}}(q_{0})\mid k\in \mathbb {N} ,\ t_{1},\dots ,t_{k}\in \mathbb {R} ,\ f_{1},\dots ,f_{k}\in {\mathcal {F}}\}.} RemarksThe difference between orbits and attainable sets is that, whereas for attainable sets only forward-in-time motions are allowed, both forward and backward motions are permitted for orbits. In particular, if the family F {\displaystyle {\mathcal {F}}} is symmetric (i.e., f ∈ F {\displaystyle f\in {\mathcal {F}}} if and only if − f ∈ F {\displaystyle -f\in {\mathcal {F}}} ), then orbits and attainable sets coincide.
The hypothesis that every vector field of F {\displaystyle {\mathcal {F}}} is complete simplifies the notations but can be dropped. In this case one has to replace flows of vector fields by local versions of them.
Orbit theorem (Nagano–Sussmann)
Each orbit O q 0 {\displaystyle {\mathcal {O}}_{q_{0}}} is an immersed submanifold of M {\displaystyle \ M} .
The tangent space to the orbit O q 0 {\displaystyle {\mathcal {O}}_{q_{0}}} at a point q {\displaystyle \ q} is the linear subspace of T q M {\displaystyle \ T_{q}M} spanned by the vectors P ∗ f ( q ) {\displaystyle \ P_{*}f(q)} where P ∗ f {\displaystyle \ P_{*}f} denotes the pushforward of f {\displaystyle \ f} by P {\displaystyle \ P} , f {\displaystyle \ f} belongs to F {\displaystyle {\mathcal {F}}} and P {\displaystyle \ P} is a diffeomorphism of M {\displaystyle \ M} of the form e t k f k ∘ ⋯ ∘ e t 1 f 1 {\displaystyle e^{t_{k}f_{k}}\circ \cdots \circ e^{t_{1}f_{1}}} with k ∈ N , t 1 , … , t k ∈ R {\displaystyle k\in \mathbb {N} ,\ t_{1},\dots ,t_{k}\in \mathbb {R} } and f 1 , … , f k ∈ F {\displaystyle f_{1},\dots ,f_{k}\in {\mathcal {F}}} .
If all the vector fields of the family F {\displaystyle {\mathcal {F}}} are analytic, then T q O q 0 = L i e q F {\displaystyle \ T_{q}{\mathcal {O}}_{q_{0}}=\mathrm {Lie} _{q}\,{\mathcal {F}}} where L i e q F {\displaystyle \mathrm {Lie} _{q}\,{\mathcal {F}}} is the evaluation at q {\displaystyle \ q} of the Lie algebra generated by F {\displaystyle {\mathcal {F}}} with respect to the Lie bracket of vector fields. Otherwise, the inclusion L i e q F ⊂ T q O q 0 {\displaystyle \mathrm {Lie} _{q}\,{\mathcal {F}}\subset T_{q}{\mathcal {O}}_{q_{0}}} holds true.
Corollary (Rashevsky–Chow theorem)
Main article: Chow–Rashevskii theorem
If L i e q F = T q M {\displaystyle \mathrm {Lie} _{q}\,{\mathcal {F}}=T_{q}M} for every q ∈ M {\displaystyle \ q\in M} and if M {\displaystyle \ M} is connected, then each orbit is equal to the whole manifold M {\displaystyle \ M} .
See also
Further reading
- Agrachev, Andrei; Sachkov, Yuri (2004). "The Orbit Theorem and its Applications". Control Theory from the Geometric Viewpoint. Berlin: Springer. pp. 63–80. ISBN 3-540-21019-9.
References
Jurdjevic, Velimir (1997). Geometric control theory. Cambridge University Press. pp. xviii+492. ISBN 0-521-49502-4.[permanent dead link] 0-521-49502-4 ↩
Sussmann, Héctor J.; Jurdjevic, Velimir (1972). "Controllability of nonlinear systems". J. Differential Equations. 12 (1): 95–116. Bibcode:1972JDE....12...95S. doi:10.1016/0022-0396(72)90007-1. https://doi.org/10.1016%2F0022-0396%2872%2990007-1 ↩
Sussmann, Héctor J. (1973). "Orbits of families of vector fields and integrability of distributions". Trans. Amer. Math. Soc. 180. American Mathematical Society: 171–188. doi:10.2307/1996660. JSTOR 1996660. https://doi.org/10.2307%2F1996660 ↩