Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
PIK3R1
Protein-coding gene in the species Homo sapiens

Phosphatidylinositol 3-kinase regulatory subunit alpha is an enzyme that in humans is encoded by the PIK3R1 gene.

Related Image Collections Add Image
We don't have any YouTube videos related to PIK3R1 yet.
We don't have any PDF documents related to PIK3R1 yet.
We don't have any Books related to PIK3R1 yet.
We don't have any archived web articles related to PIK3R1 yet.

Function

Phosphatidylinositol 3-kinase phosphorylates the inositol ring of phosphatidylinositol at the 3-prime position. The enzyme comprises a 110 kD catalytic subunit and a regulatory subunit of either 85, 55, or 50 kD. The Pik3r1 gene locus encodes the 85 kD regulatory subunit, as well as 55 and 50 kD regulatory subunits. It used to be thought that alternative splicing of this gene resulted in three transcript variants encoding different isoforms.2 In fact, it has since been shown that the 55 and 50kD subunits have their own promotors within the gene locus Pik3r1.3

Phosphatidylinositol 3-kinase plays an important role in the metabolic actions of insulin, and a mutation in this gene has been associated with insulin resistance.4 Suppression specifically of the 85kD subunit in early murine embryoid body development results in a transient cell-cell adhesion deficiency, mediated by transient downregulation of the adhesion molecule integrin-beta1 (ITGB1).5

Clinical significance

Mutations in PIK3R1 are implicated in cases of breast cancer.6

Mutations in PIK3R1 are associated to SHORT syndrome.7

Interactions

PIK3R1 has been shown to interact with:

Further reading

References

  1. Volinia S, Patracchini P, Otsu M, Hiles I, Gout I, Calzolari E, Bernardi F, Rooke L, Waterfield MD (May 1992). "Chromosomal localization of human p85 alpha, a subunit of phosphatidylinositol 3-kinase, and its homologue p85 beta". Oncogene. 7 (4): 789–93. PMID 1314371. /wiki/PMID_(identifier)

  2. "Entrez Gene: PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha)". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5295

  3. Gurney SM, Forster P, Just U, Schwanbeck R (2011). "Suppression of the PI3K Subunit p85alpha Delays Embryoid Body Development and Inhibits Cell Adhesion". J. Cell. Biochem. 112 (12): 3573–81. doi:10.1002/jcb.23285. PMID 11313349. S2CID 206020214. /wiki/Doi_(identifier)

  4. "Entrez Gene: PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha)". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5295

  5. Gurney SM, Forster P, Just U, Schwanbeck R (2011). "Suppression of the PI3K Subunit p85alpha Delays Embryoid Body Development and Inhibits Cell Adhesion". J. Cell. Biochem. 112 (12): 3573–81. doi:10.1002/jcb.23285. PMID 11313349. S2CID 206020214. /wiki/Doi_(identifier)

  6. The Cancer Genome Atlas Network (October 2012). "Comprehensive molecular portraits of human breast tumours". Nature. 490 (7418): 61–70. Bibcode:2012Natur.490...61T. doi:10.1038/nature11412. PMC 3465532. PMID 23000897. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465532

  7. Bárcena C, Quesada V, De Sandre-Giovannoli A, Puente DA, Fernández-Toral J, Sigaudy S, Baban A, Lévy N, Velasco G, López-Otín C (2014). "Exome sequencing identifies a novel mutation in PIK3R1 as the cause of SHORT syndrome". BMC Med. Genet. 15 (1): 3573–3581. doi:10.1186/1471-2350-15-51. PMC 4022398. PMID 21780162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022398

  8. Kang Q, Cao Y, Zolkiewska A (2001). "Direct interaction between the cytoplasmic tail of ADAM 12 and the Src homology 3 domain of p85alpha activates phosphatidylinositol 3-kinase in C2C12 cells". J. Biol. Chem. 276 (27): 24466–72. doi:10.1074/jbc.M101162200. PMID 11313349. https://doi.org/10.1074%2Fjbc.M101162200

  9. Li E, Stupack DG, Brown SL, Klemke R, Schlaepfer DD, Nemerow GR (2000). "Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry". J. Biol. Chem. 275 (19): 14729–35. doi:10.1074/jbc.275.19.14729. PMID 10799562. https://doi.org/10.1074%2Fjbc.275.19.14729

  10. Lavagna-Sévenier C, Marchetto S, Birnbaum D, Rosnet O (1998). "The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells". J. Biol. Chem. 273 (24): 14962–7. doi:10.1074/jbc.273.24.14962. PMID 9614102. https://doi.org/10.1074%2Fjbc.273.24.14962

  11. Elly C, Witte S, Zhang Z, Rosnet O, Lipkowitz S, Altman A, Liu YC (1999). "Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation". Oncogene. 18 (5): 1147–56. doi:10.1038/sj.onc.1202411. PMID 10022120. https://doi.org/10.1038%2Fsj.onc.1202411

  12. De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R (1999). "Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation". EMBO J. 18 (4): 904–15. doi:10.1093/emboj/18.4.904. PMC 1171183. PMID 10022833. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171183

  13. van Dijk TB, van Den Akker E, Amelsvoort MP, Mano H, Löwenberg B, von Lindern M (2000). "Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells". Blood. 96 (10): 3406–13. doi:10.1182/blood.V96.10.3406. hdl:1765/9530. PMID 11071635. https://pure.eur.nl/en/publications/395fb5fc-60e3-45d7-a9b1-fc7b9cc6b4bc

  14. Serve H, Hsu YC, Besmer P (1994). "Tyrosine residue 719 of the c-kit receptor is essential for binding of the P85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells". J. Biol. Chem. 269 (8): 6026–30. doi:10.1016/S0021-9258(17)37564-6. PMID 7509796. https://doi.org/10.1016%2FS0021-9258%2817%2937564-6

  15. Pagès F, Ragueneau M, Klasen S, Battifora M, Couez D, Sweet R, Truneh A, Ward SG, Olive D (1996). "Two distinct intracytoplasmic regions of the T-cell adhesion molecule CD28 participate in phosphatidylinositol 3-kinase association". J. Biol. Chem. 271 (16): 9403–9. doi:10.1074/jbc.271.16.9403. PMID 8621607. https://doi.org/10.1074%2Fjbc.271.16.9403

  16. Lee DM, Patel DD, Pendergast AM, Haynes BF (1996). "Functional association of CD7 with phosphatidylinositol 3-kinase: interaction via a YEDM motif". Int. Immunol. 8 (8): 1195–203. doi:10.1093/intimm/8.8.1195. PMID 8918688. https://doi.org/10.1093%2Fintimm%2F8.8.1195

  17. Subrahmanyam G, Rudd CE, Schneider H (2003). "Association of T cell antigen CD7 with type II phosphatidylinositol-4 kinase, a key component in pathways of inositol phosphate turnover". Eur. J. Immunol. 33 (1): 46–52. doi:10.1002/immu.200390006. PMID 12594831. S2CID 26388891. https://doi.org/10.1002%2Fimmu.200390006

  18. Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, Hong JJ, Blackshaw S, Ferris CD, Snyder SH (2000). "Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N". Cell. 103 (6): 919–30. doi:10.1016/S0092-8674(00)00195-1. PMID 11136977. S2CID 16610638. https://doi.org/10.1016%2FS0092-8674%2800%2900195-1

  19. Gesbert F, Garbay C, Bertoglio J (1998). "Interleukin-2 stimulation induces tyrosine phosphorylation of p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and natural killer cells". J. Biol. Chem. 273 (7): 3986–93. doi:10.1074/jbc.273.7.3986. PMID 9461587. https://doi.org/10.1074%2Fjbc.273.7.3986

  20. Zhang S, Broxmeyer HE (1999). "p85 subunit of PI3 kinase does not bind to human Flt3 receptor, but associates with SHP2, SHIP, and a tyrosine-phosphorylated 100-kDa protein in Flt3 ligand-stimulated hematopoietic cells". Biochem. Biophys. Res. Commun. 254 (2): 440–5. doi:10.1006/bbrc.1998.9959. PMID 9918857. /wiki/Doi_(identifier)

  21. Dufour C, Guenou H, Kaabeche K, Bouvard D, Sanjay A, Marie PJ (2008). "FGFR2-Cbl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblast survival". Bone. 42 (6): 1032–9. doi:10.1016/j.bone.2008.02.009. PMID 18374639. /wiki/Doi_(identifier)

  22. Pandey A, Lazar DF, Saltiel AR, Dixit VM (1994). "Activation of the Eck receptor protein tyrosine kinase stimulates phosphatidylinositol 3-kinase activity". J. Biol. Chem. 269 (48): 30154–7. doi:10.1016/S0021-9258(18)43790-8. PMID 7982920. https://doi.org/10.1016%2FS0021-9258%2818%2943790-8

  23. Shigematsu H, Iwasaki H, Otsuka T, Ohno Y, Arima F, Niho Y (1997). "Role of the vav proto-oncogene product (Vav) in erythropoietin-mediated cell proliferation and phosphatidylinositol 3-kinase activity". J. Biol. Chem. 272 (22): 14334–40. doi:10.1074/jbc.272.22.14334. PMID 9162069. https://doi.org/10.1074%2Fjbc.272.22.14334

  24. Damen JE, Cutler RL, Jiao H, Yi T, Krystal G (1995). "Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity". J. Biol. Chem. 270 (40): 23402–8. doi:10.1074/jbc.270.40.23402. PMID 7559499. https://doi.org/10.1074%2Fjbc.270.40.23402

  25. Hellyer NJ, Kim MS, Koland JG (2001). "Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor". J. Biol. Chem. 276 (45): 42153–61. doi:10.1074/jbc.M102079200. PMID 11546794. https://doi.org/10.1074%2Fjbc.M102079200

  26. Lin J, Adam RM, Santiestevan E, Freeman MR (1999). "The phosphatidylinositol 3'-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells". Cancer Res. 59 (12): 2891–7. PMID 10383151. /wiki/PMID_(identifier)

  27. Gautreau A, Poullet P, Louvard D, Arpin M (1999). "Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway". Proc. Natl. Acad. Sci. U.S.A. 96 (13): 7300–5. Bibcode:1999PNAS...96.7300G. doi:10.1073/pnas.96.13.7300. PMC 22080. PMID 10377409. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22080

  28. Chacko GW, Brandt JT, Coggeshall KM, Anderson CL (1996). "Phosphoinositide 3-kinase and p72syk noncovalently associate with the low affinity Fc gamma receptor on human platelets through an immunoreceptor tyrosine-based activation motif. Reconstitution with synthetic phosphopeptides". J. Biol. Chem. 271 (18): 10775–81. doi:10.1074/jbc.271.18.10775. PMID 8631888. https://doi.org/10.1074%2Fjbc.271.18.10775

  29. Ibarrola I, Vossebeld PJ, Homburg CH, Thelen M, Roos D, Verhoeven AJ (1997). "Influence of tyrosine phosphorylation on protein interaction with FcgammaRIIa". Biochim. Biophys. Acta. 1357 (3): 348–58. doi:10.1016/S0167-4889(97)00034-7. PMID 9268059. https://doi.org/10.1016%2FS0167-4889%2897%2900034-7

  30. Bertagnolo V, Marchisio M, Volinia S, Caramelli E, Capitani S (1998). "Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells". FEBS Lett. 441 (3): 480–4. doi:10.1016/S0014-5793(98)01593-2. PMID 9891995. S2CID 38371954. https://doi.org/10.1016%2FS0014-5793%2898%2901593-2

  31. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (1996). "A Grb2-associated docking protein in EGF- and insulin-receptor signalling". Nature. 379 (6565): 560–4. Bibcode:1996Natur.379..560H. doi:10.1038/379560a0. PMID 8596638. S2CID 4271970. /wiki/Bibcode_(identifier)

  32. Rocchi S, Tartare-Deckert S, Murdaca J, Holgado-Madruga M, Wong AJ, Van Obberghen E (1998). "Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules". Mol. Endocrinol. 12 (7): 914–23. doi:10.1210/mend.12.7.0141. PMID 9658397. https://doi.org/10.1210%2Fmend.12.7.0141

  33. Lynch DK, Daly RJ (2002). "PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2". EMBO J. 21 (1–2): 72–82. doi:10.1093/emboj/21.1.72. PMC 125816. PMID 11782427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC125816

  34. Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J (2001). "A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners". FEBS Lett. 495 (3): 148–53. doi:10.1016/S0014-5793(01)02373-0. PMID 11334882. S2CID 24499468. /wiki/Doi_(identifier)

  35. Saleem A, Kharbanda S, Yuan ZM, Kufe D (1995). "Monocyte colony-stimulating factor stimulates binding of phosphatidylinositol 3-kinase to Grb2.Sos complexes in human monocytes". J. Biol. Chem. 270 (18): 10380–3. doi:10.1074/jbc.270.18.10380. PMID 7737969. https://doi.org/10.1074%2Fjbc.270.18.10380

  36. Wang J, Auger KR, Jarvis L, Shi Y, Roberts TM (1995). "Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase". J. Biol. Chem. 270 (21): 12774–80. doi:10.1074/jbc.270.21.12774. PMID 7759531. https://doi.org/10.1074%2Fjbc.270.21.12774

  37. Hanna AN, Chan EY, Xu J, Stone JC, Brindley DN (1999). "A novel pathway for tumor necrosis factor-alpha and ceramide signaling involving sequential activation of tyrosine kinase, p21(ras), and phosphatidylinositol 3-kinase". J. Biol. Chem. 274 (18): 12722–9. doi:10.1074/jbc.274.18.12722. PMID 10212255. https://doi.org/10.1074%2Fjbc.274.18.12722

  38. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J (1997). "Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras". Cell. 89 (3): 457–67. doi:10.1016/S0092-8674(00)80226-3. PMID 9150145. S2CID 14459536. https://doi.org/10.1016%2FS0092-8674%2800%2980226-3

  39. Hamer I, Foti M, Emkey R, Cordier-Bussat M, Philippe J, De Meyts P, Maeder C, Kahn CR, Carpentier JL (2002). "An arginine to cysteine(252) mutation in insulin receptors from a patient with severe insulin resistance inhibits receptor internalisation but preserves signalling events". Diabetologia. 45 (5): 657–67. doi:10.1007/s00125-002-0798-5. PMID 12107746. https://doi.org/10.1007%2Fs00125-002-0798-5

  40. Hadari YR, Tzahar E, Nadiv O, Rothenberg P, Roberts CT, LeRoith D, Yarden Y, Zick Y (1992). "Insulin and insulinomimetic agents induce activation of phosphatidylinositol 3'-kinase upon its association with pp185 (IRS-1) in intact rat livers". J. Biol. Chem. 267 (25): 17483–6. doi:10.1016/S0021-9258(19)37065-6. PMID 1381348. https://doi.org/10.1016%2FS0021-9258%2819%2937065-6

  41. Morrison KB, Tognon CE, Garnett MJ, Deal C, Sorensen PH (2002). "ETV6-NTRK3 transformation requires insulin-like growth factor 1 receptor signaling and is associated with constitutive IRS-1 tyrosine phosphorylation". Oncogene. 21 (37): 5684–95. doi:10.1038/sj.onc.1205669. PMID 12173038. https://doi.org/10.1038%2Fsj.onc.1205669

  42. Gual P, Gonzalez T, Grémeaux T, Barres R, Le Marchand-Brustel Y, Tanti JF (2003). "Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes". J. Biol. Chem. 278 (29): 26550–7. doi:10.1074/jbc.M212273200. PMID 12730242. https://doi.org/10.1074%2Fjbc.M212273200

  43. Hamer I, Foti M, Emkey R, Cordier-Bussat M, Philippe J, De Meyts P, Maeder C, Kahn CR, Carpentier JL (2002). "An arginine to cysteine(252) mutation in insulin receptors from a patient with severe insulin resistance inhibits receptor internalisation but preserves signalling events". Diabetologia. 45 (5): 657–67. doi:10.1007/s00125-002-0798-5. PMID 12107746. https://doi.org/10.1007%2Fs00125-002-0798-5

  44. Argetsinger LS, Norstedt G, Billestrup N, White MF, Carter-Su C (1996). "Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling". J. Biol. Chem. 271 (46): 29415–21. doi:10.1074/jbc.271.46.29415. PMID 8910607. https://doi.org/10.1074%2Fjbc.271.46.29415

  45. Verdier F, Chrétien S, Billat C, Gisselbrecht S, Lacombe C, Mayeux P (1997). "Erythropoietin induces the tyrosine phosphorylation of insulin receptor substrate-2. An alternate pathway for erythropoietin-induced phosphatidylinositol 3-kinase activation". J. Biol. Chem. 272 (42): 26173–8. doi:10.1074/jbc.272.42.26173. PMID 9334184. https://doi.org/10.1074%2Fjbc.272.42.26173

  46. Kim B, Cheng HL, Margolis B, Feldman EL (1998). "Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling". J. Biol. Chem. 273 (51): 34543–50. doi:10.1074/jbc.273.51.34543. PMID 9852124. https://doi.org/10.1074%2Fjbc.273.51.34543

  47. Reddy SA, Huang JH, Liao WS (1997). "Phosphatidylinositol 3-kinase in interleukin 1 signaling. Physical interaction with the interleukin 1 receptor and requirement in NFkappaB and AP-1 activation". J. Biol. Chem. 272 (46): 29167–73. doi:10.1074/jbc.272.46.29167. PMID 9360994. https://doi.org/10.1074%2Fjbc.272.46.29167

  48. Fuhrer DK, Yang YC (1996). "Complex formation of JAK2 with PP2A, P13K, and Yes in response to the hematopoietic cytokine interleukin-11". Biochem. Biophys. Res. Commun. 224 (2): 289–96. doi:10.1006/bbrc.1996.1023. PMID 8702385. /wiki/Doi_(identifier)

  49. Sánchez-Margalet V, Najib S (2001). "Sam68 is a docking protein linking GAP and PI3K in insulin receptor signaling". Mol. Cell. Endocrinol. 183 (1–2): 113–21. doi:10.1016/S0303-7207(01)00587-1. PMID 11604231. S2CID 24594450. /wiki/Doi_(identifier)

  50. Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB, Moran MF (1999). "Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src". Oncogene. 18 (33): 4647–53. doi:10.1038/sj.onc.1203079. PMID 10467411. https://doi.org/10.1038%2Fsj.onc.1203079

  51. Kozutsumi H, Toyoshima H, Hagiwara K, Yazaki Y, Hirai H (1994). "Human ltk receptor tyrosine kinase binds to PLC-gamma 1, PI3-K, GAP and Raf-1 in vivo". Oncogene. 9 (10): 2991–8. PMID 8084603. /wiki/PMID_(identifier)

  52. Ueno H, Honda H, Nakamoto T, Yamagata T, Sasaki K, Miyagawa K, Mitani K, Yazaki Y, Hirai H (1997). "The phosphatidylinositol 3' kinase pathway is required for the survival signal of leukocyte tyrosine kinase". Oncogene. 14 (25): 3067–72. doi:10.1038/sj.onc.1201153. PMID 9223670. https://doi.org/10.1038%2Fsj.onc.1201153

  53. Paz PE, Wang S, Clarke H, Lu X, Stokoe D, Abo A (2001). "Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells". Biochem. J. 356 (Pt 2): 461–71. doi:10.1042/0264-6021:3560461. PMC 1221857. PMID 11368773. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221857

  54. Shim EK, Moon CS, Lee GY, Ha YJ, Chae SK, Lee JR (2004). "Association of the Src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) with the p85 subunit of phosphoinositide 3-kinase". FEBS Lett. 575 (1–3): 35–40. doi:10.1016/j.febslet.2004.07.090. PMID 15388330. S2CID 24678709. https://doi.org/10.1016%2Fj.febslet.2004.07.090

  55. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD (1997). "P110delta, a novel phosphoinositide 3-kinase in leukocytes". Proc. Natl. Acad. Sci. U.S.A. 94 (9): 4330–5. Bibcode:1997PNAS...94.4330V. doi:10.1073/pnas.94.9.4330. PMC 20722. PMID 9113989. /wiki/Melanie_Welham

  56. Guinebault C, Payrastre B, Racaud-Sultan C, Mazarguil H, Breton M, Mauco G, Plantavid M, Chap H (1995). "Integrin-dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombin-activated platelets involves specific interactions of p85 alpha with actin filaments and focal adhesion kinase". J. Cell Biol. 129 (3): 831–42. doi:10.1083/jcb.129.3.831. PMC 2120444. PMID 7537275. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120444

  57. Karlsson T, Songyang Z, Landgren E, Lavergne C, Di Fiore PP, Anafi M, Pawson T, Cantley LC, Claesson-Welsh L, Welsh M (1995). "Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins". Oncogene. 10 (8): 1475–83. PMID 7537362. /wiki/PMID_(identifier)

  58. Kapeller R, Toker A, Cantley LC, Carpenter CL (1995). "Phosphoinositide 3-kinase binds constitutively to alpha/beta-tubulin and binds to gamma-tubulin in response to insulin". J. Biol. Chem. 270 (43): 25985–91. doi:10.1074/jbc.270.43.25985. PMID 7592789. https://doi.org/10.1074%2Fjbc.270.43.25985

  59. Lan Z, Wu H, Li W, Wu S, Lu L, Xu M, Dai W (2000). "Transforming activity of receptor tyrosine kinase tyro3 is mediated, at least in part, by the PI3 kinase-signaling pathway". Blood. 95 (2): 633–8. doi:10.1182/blood.V95.2.633. PMID 10627473. /wiki/Doi_(identifier)

  60. Shigematsu H, Iwasaki H, Otsuka T, Ohno Y, Arima F, Niho Y (1997). "Role of the vav proto-oncogene product (Vav) in erythropoietin-mediated cell proliferation and phosphatidylinositol 3-kinase activity". J. Biol. Chem. 272 (22): 14334–40. doi:10.1074/jbc.272.22.14334. PMID 9162069. https://doi.org/10.1074%2Fjbc.272.22.14334

  61. Bertagnolo V, Marchisio M, Volinia S, Caramelli E, Capitani S (1998). "Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells". FEBS Lett. 441 (3): 480–4. doi:10.1016/S0014-5793(98)01593-2. PMID 9891995. S2CID 38371954. https://doi.org/10.1016%2FS0014-5793%2898%2901593-2

  62. Banin S, Truong O, Katz DR, Waterfield MD, Brickell PM, Gout I (1996). "Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases". Curr. Biol. 6 (8): 981–8. Bibcode:1996CBio....6..981B. doi:10.1016/S0960-9822(02)00642-5. PMID 8805332. S2CID 162267. https://doi.org/10.1016%2FS0960-9822%2802%2900642-5