Parabolic coordinates are a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal parabolas. A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas.
Parabolic coordinates have found many applications, e.g., the treatment of the Stark effect and the potential theory of the edges.
Two-dimensional parabolic coordinates
Two-dimensional parabolic coordinates ( σ , τ ) {\displaystyle (\sigma ,\tau )} are defined by the equations, in terms of Cartesian coordinates:
x = σ τ {\displaystyle x=\sigma \tau } y = 1 2 ( τ 2 − σ 2 ) {\displaystyle y={\frac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)}The curves of constant σ {\displaystyle \sigma } form confocal parabolae
2 y = x 2 σ 2 − σ 2 {\displaystyle 2y={\frac {x^{2}}{\sigma ^{2}}}-\sigma ^{2}}that open upwards (i.e., towards + y {\displaystyle +y} ), whereas the curves of constant τ {\displaystyle \tau } form confocal parabolae
2 y = − x 2 τ 2 + τ 2 {\displaystyle 2y=-{\frac {x^{2}}{\tau ^{2}}}+\tau ^{2}}that open downwards (i.e., towards − y {\displaystyle -y} ). The foci of all these parabolae are located at the origin.
The Cartesian coordinates x {\displaystyle x} and y {\displaystyle y} can be converted to parabolic coordinates by:
σ = sign ( x ) x 2 + y 2 − y {\displaystyle \sigma =\operatorname {sign} (x){\sqrt {{\sqrt {x^{2}+y^{2}}}-y}}} τ = x 2 + y 2 + y {\displaystyle \tau ={\sqrt {{\sqrt {x^{2}+y^{2}}}+y}}}Two-dimensional scale factors
The scale factors for the parabolic coordinates ( σ , τ ) {\displaystyle (\sigma ,\tau )} are equal
h σ = h τ = σ 2 + τ 2 {\displaystyle h_{\sigma }=h_{\tau }={\sqrt {\sigma ^{2}+\tau ^{2}}}}Hence, the infinitesimal element of area is
d A = ( σ 2 + τ 2 ) d σ d τ {\displaystyle dA=\left(\sigma ^{2}+\tau ^{2}\right)d\sigma d\tau }and the Laplacian equals
∇ 2 Φ = 1 σ 2 + τ 2 ( ∂ 2 Φ ∂ σ 2 + ∂ 2 Φ ∂ τ 2 ) {\displaystyle \nabla ^{2}\Phi ={\frac {1}{\sigma ^{2}+\tau ^{2}}}\left({\frac {\partial ^{2}\Phi }{\partial \sigma ^{2}}}+{\frac {\partial ^{2}\Phi }{\partial \tau ^{2}}}\right)}Other differential operators such as ∇ ⋅ F {\displaystyle \nabla \cdot \mathbf {F} } and ∇ × F {\displaystyle \nabla \times \mathbf {F} } can be expressed in the coordinates ( σ , τ ) {\displaystyle (\sigma ,\tau )} by substituting the scale factors into the general formulae found in orthogonal coordinates.
Three-dimensional parabolic coordinates
The two-dimensional parabolic coordinates form the basis for two sets of three-dimensional orthogonal coordinates. The parabolic cylindrical coordinates are produced by projecting in the z {\displaystyle z} -direction. Rotation about the symmetry axis of the parabolae produces a set of confocal paraboloids, the coordinate system of tridimensional parabolic coordinates. Expressed in terms of cartesian coordinates:
x = σ τ cos φ {\displaystyle x=\sigma \tau \cos \varphi } y = σ τ sin φ {\displaystyle y=\sigma \tau \sin \varphi } z = 1 2 ( τ 2 − σ 2 ) {\displaystyle z={\frac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)}where the parabolae are now aligned with the z {\displaystyle z} -axis, about which the rotation was carried out. Hence, the azimuthal angle φ {\displaystyle \varphi } is defined
tan φ = y x {\displaystyle \tan \varphi ={\frac {y}{x}}}The surfaces of constant σ {\displaystyle \sigma } form confocal paraboloids
2 z = x 2 + y 2 σ 2 − σ 2 {\displaystyle 2z={\frac {x^{2}+y^{2}}{\sigma ^{2}}}-\sigma ^{2}}that open upwards (i.e., towards + z {\displaystyle +z} ) whereas the surfaces of constant τ {\displaystyle \tau } form confocal paraboloids
2 z = − x 2 + y 2 τ 2 + τ 2 {\displaystyle 2z=-{\frac {x^{2}+y^{2}}{\tau ^{2}}}+\tau ^{2}}that open downwards (i.e., towards − z {\displaystyle -z} ). The foci of all these paraboloids are located at the origin.
The Riemannian metric tensor associated with this coordinate system is
g i j = [ σ 2 + τ 2 0 0 0 σ 2 + τ 2 0 0 0 σ 2 τ 2 ] {\displaystyle g_{ij}={\begin{bmatrix}\sigma ^{2}+\tau ^{2}&0&0\\0&\sigma ^{2}+\tau ^{2}&0\\0&0&\sigma ^{2}\tau ^{2}\end{bmatrix}}}Three-dimensional scale factors
The three dimensional scale factors are:
h σ = σ 2 + τ 2 {\displaystyle h_{\sigma }={\sqrt {\sigma ^{2}+\tau ^{2}}}} h τ = σ 2 + τ 2 {\displaystyle h_{\tau }={\sqrt {\sigma ^{2}+\tau ^{2}}}} h φ = σ τ {\displaystyle h_{\varphi }=\sigma \tau }It is seen that the scale factors h σ {\displaystyle h_{\sigma }} and h τ {\displaystyle h_{\tau }} are the same as in the two-dimensional case. The infinitesimal volume element is then
d V = h σ h τ h φ d σ d τ d φ = σ τ ( σ 2 + τ 2 ) d σ d τ d φ {\displaystyle dV=h_{\sigma }h_{\tau }h_{\varphi }\,d\sigma \,d\tau \,d\varphi =\sigma \tau \left(\sigma ^{2}+\tau ^{2}\right)\,d\sigma \,d\tau \,d\varphi }and the Laplacian is given by
∇ 2 Φ = 1 σ 2 + τ 2 [ 1 σ ∂ ∂ σ ( σ ∂ Φ ∂ σ ) + 1 τ ∂ ∂ τ ( τ ∂ Φ ∂ τ ) ] + 1 σ 2 τ 2 ∂ 2 Φ ∂ φ 2 {\displaystyle \nabla ^{2}\Phi ={\frac {1}{\sigma ^{2}+\tau ^{2}}}\left[{\frac {1}{\sigma }}{\frac {\partial }{\partial \sigma }}\left(\sigma {\frac {\partial \Phi }{\partial \sigma }}\right)+{\frac {1}{\tau }}{\frac {\partial }{\partial \tau }}\left(\tau {\frac {\partial \Phi }{\partial \tau }}\right)\right]+{\frac {1}{\sigma ^{2}\tau ^{2}}}{\frac {\partial ^{2}\Phi }{\partial \varphi ^{2}}}}Other differential operators such as ∇ ⋅ F {\displaystyle \nabla \cdot \mathbf {F} } and ∇ × F {\displaystyle \nabla \times \mathbf {F} } can be expressed in the coordinates ( σ , τ , ϕ ) {\displaystyle (\sigma ,\tau ,\phi )} by substituting the scale factors into the general formulae found in orthogonal coordinates.
See also
Bibliography
- Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 660. ISBN 0-07-043316-X. LCCN 52011515. {{cite book}}: ISBN / Date incompatibility (help)
- Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 185–186. LCCN 55010911.
- Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 180. LCCN 59014456. ASIN B0000CKZX7.
- Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. p. 96. LCCN 67025285.
- Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9. Same as Morse & Feshbach (1953), substituting uk for ξk.
- Moon P, Spencer DE (1988). "Parabolic Coordinates (μ, ν, ψ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 34–36 (Table 1.08). ISBN 978-0-387-18430-2.