Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Paracompact uniform honeycombs
Tessellation of convex uniform polyhedron cells
Example paracompact regular honeycombs
{3,3,6}{6,3,3}{4,3,6}{6,3,4}
{5,3,6}{6,3,5}{6,3,6}{3,6,3}
{4,4,3}{3,4,4}{4,4,4}

In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.

We don't have any images related to Paracompact uniform honeycombs yet.
We don't have any YouTube videos related to Paracompact uniform honeycombs yet.
We don't have any PDF documents related to Paracompact uniform honeycombs yet.
We don't have any Books related to Paracompact uniform honeycombs yet.
We don't have any archived web articles related to Paracompact uniform honeycombs yet.

Regular paracompact honeycombs

Of the uniform paracompact H3 honeycombs, 11 are regular, meaning that their group of symmetries acts transitively on their flags. These have Schläfli symbol {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5}, and {6,3,6}, and are shown below. Four have finite Ideal polyhedral cells: {3,3,6}, {4,3,6}, {3,4,4}, and {5,3,6}.

11 paracompact regular honeycombs
{6,3,3}{6,3,4}{6,3,5}{6,3,6}{4,4,3}{4,4,4}
{3,3,6}{4,3,6}{5,3,6}{3,6,3}{3,4,4}
NameSchläfliSymbol{p,q,r}CoxeterCelltype{p,q}Facetype{p}Edgefigure{r}Vertexfigure{q,r}DualCoxetergroup
Order-6 tetrahedral honeycomb{3,3,6}{3,3}{3}{6}{3,6}{6,3,3}[6,3,3]
Hexagonal tiling honeycomb{6,3,3}{6,3}{6}{3}{3,3}{3,3,6}
Order-4 octahedral honeycomb{3,4,4}{3,4}{3}{4}{4,4}{4,4,3}[4,4,3]
Square tiling honeycomb{4,4,3}{4,4}{4}{3}{4,3}{3,4,4}
Triangular tiling honeycomb{3,6,3}{3,6}{3}{3}{6,3}Self-dual[3,6,3]
Order-6 cubic honeycomb{4,3,6}{4,3}{4}{4}{3,6}{6,3,4}[6,3,4]
Order-4 hexagonal tiling honeycomb{6,3,4}{6,3}{6}{4}{3,4}{4,3,6}
Order-4 square tiling honeycomb{4,4,4}{4,4}{4}{4}{4,4}Self-dual[4,4,4]
Order-6 dodecahedral honeycomb{5,3,6}{5,3}{5}{5}{3,6}{6,3,5}[6,3,5]
Order-5 hexagonal tiling honeycomb{6,3,5}{6,3}{6}{5}{3,5}{5,3,6}
Order-6 hexagonal tiling honeycomb{6,3,6}{6,3}{6}{6}{3,6}Self-dual[6,3,6]

Coxeter groups of paracompact uniform honeycombs

These graphs show subgroup relations of paracompact hyperbolic Coxeter groups. Order 2 subgroups represent bisecting a Goursat tetrahedron with a plane of mirror symmetry.

This is a complete enumeration of the 151 unique Wythoffian paracompact uniform honeycombs generated from tetrahedral fundamental domains (rank 4 paracompact coxeter groups). The honeycombs are indexed here for cross-referencing duplicate forms, with brackets around the nonprimary constructions.

The alternations are listed, but are either repeats or don't generate uniform solutions. Single-hole alternations represent a mirror removal operation. If an end-node is removed, another simplex (tetrahedral) family is generated. If a hole has two branches, a Vinberg polytope is generated, although only Vinberg polytope with mirror symmetry are related to the simplex groups, and their uniform honeycombs have not been systematically explored. These nonsimplectic (pyramidal) Coxeter groups are not enumerated on this page, except as special cases of half groups of the tetrahedral ones. Seven uniform honeycombs that arise here as alternations have been numbered 152 to 158, after the 151 Wythoffian forms not requiring alternation for their construction.

Tetrahedral hyperbolic paracompact group summary
Coxeter groupSimplexvolumeCommutator subgroupUnique honeycomb count
[6,3,3]0.0422892336[1+,6,(3,3)+] = [3,3[3]]+15
[4,4,3]0.0763304662[1+,4,1+,4,3+]15
[3,3[3]]0.0845784672[3,3[3]]+4
[6,3,4]0.1057230840[1+,6,3+,4,1+] = [3[]x[]]+15
[3,41,1]0.1526609324[3+,41+,1+]4
[3,6,3]0.1691569344[3+,6,3+]8
[6,3,5]0.1715016613[1+,6,(3,5)+] = [5,3[3]]+15
[6,31,1]0.2114461680[1+,6,(31,1)+] = [3[]x[]]+4
[4,3[3]]0.2114461680[1+,4,3[3]]+ = [3[]x[]]+4
[4,4,4]0.2289913985[4+,4+,4+]+6
[6,3,6]0.2537354016[1+,6,3+,6,1+] = [3[3,3]]+8
[(4,4,3,3)]0.3053218647[(4,1+,4,(3,3)+)]4
[5,3[3]]0.3430033226[5,3[3]]+4
[(6,3,3,3)]0.3641071004[(6,3,3,3)]+9
[3[]x[]]0.4228923360[3[]x[]]+1
[41,1,1]0.4579827971[1+,41+,1+,1+]0
[6,3[3]]0.5074708032[1+,6,3[3]] = [3[3,3]]+2
[(6,3,4,3)]0.5258402692[(6,3+,4,3+)]9
[(4,4,4,3)]0.5562821156[(4,1+,4,1+,4,3+)]9
[(6,3,5,3)]0.6729858045[(6,3,5,3)]+9
[(6,3,6,3)]0.8457846720[(6,3+,6,3+)]5
[(4,4,4,4)]0.9159655942[(4+,4+,4+,4+)]1
[3[3,3]]1.014916064[3[3,3]]+0

The complete list of nonsimplectic (non-tetrahedral) paracompact Coxeter groups was published by P. Tumarkin in 2003.1 The smallest paracompact form in H3 can be represented by or , or [∞,3,3,∞] which can be constructed by a mirror removal of paracompact hyperbolic group [3,4,4] as [3,4,1+,4] : = . The doubled fundamental domain changes from a tetrahedron into a quadrilateral pyramid. Another pyramid is or , constructed as [4,4,1+,4] = [∞,4,4,∞] : = .

Removing a mirror from some of the cyclic hyperbolic Coxeter graphs become bow-tie graphs: [(3,3,4,1+,4)] = [((3,∞,3)),((3,∞,3))] or , [(3,4,4,1+,4)] = [((4,∞,3)),((3,∞,4))] or , [(4,4,4,1+,4)] = [((4,∞,4)),((4,∞,4))] or . = , = , = .

Another nonsimplectic half groups is ↔ .

A radical nonsimplectic subgroup is ↔ , which can be doubled into a triangular prism domain as ↔ .

Pyramidal hyperbolic paracompact group summary
DimensionRankGraphs
H35

| | | | | | | | | | | | | | | | | | | | | | | | | | |

Linear graphs

[6,3,3] family

#Honeycomb name Coxeter diagram: Schläfli symbolCells by location(and count around each vertex)Vertex figurePicture
1234
1hexagonal (hexah){6,3,3}---(4)(6.6.6) Tetrahedron
2rectified hexagonal (rihexah)t1{6,3,3} or r{6,3,3}(2)(3.3.3)--(3)(3.6.3.6) Triangular prism
3rectified order-6 tetrahedral (rath)t1{3,3,6} or r{3,3,6}(6)(3.3.3.3)--(2)(3.3.3.3.3.3) Hexagonal prism
4order-6 tetrahedral (thon){3,3,6}(∞)(3.3.3)--- Triangular tiling
5truncated hexagonal (thexah) t0,1{6,3,3} or t{6,3,3}(1)(3.3.3)--(3)(3.12.12)Triangular pyramid
6cantellated hexagonal (srihexah)t0,2{6,3,3} or rr{6,3,3}(1)3.3.3.3(2)(4.4.3)-(2)(3.4.6.4)
7runcinated hexagonal (sidpithexah)t0,3{6,3,3}(1)(3.3.3)(3)(4.4.3)(3)(4.4.6)(1)(6.6.6)
8cantellated order-6 tetrahedral (srath)t0,2{3,3,6} or rr{3,3,6}(1)(3.4.3.4)-(2)(4.4.6)(2)(3.6.3.6)
9bitruncated hexagonal (tehexah)t1,2{6,3,3} or 2t{6,3,3}(2)(3.6.6)--(2)(6.6.6)
10truncated order-6 tetrahedral (tath)t0,1{3,3,6} or t{3,3,6}(6)(3.6.6)--(1)(3.3.3.3.3.3)
11cantitruncated hexagonal (grihexah)t0,1,2{6,3,3} or tr{6,3,3}(1)(3.6.6)(1)(4.4.3)-(2)(4.6.12)
12runcitruncated hexagonal (prath)t0,1,3{6,3,3}(1)(3.4.3.4)(2)(4.4.3)(1)(4.4.12)(1)(3.12.12)
13runcitruncated order-6 tetrahedral (prihexah)t0,1,3{3,3,6}(1)(3.6.6)(1)(4.4.6)(2)(4.4.6)(1)(3.4.6.4)
14cantitruncated order-6 tetrahedral (grath)t0,1,2{3,3,6} or tr{3,3,6}(2)(4.6.6)-(1)(4.4.6)(1)(6.6.6)
15omnitruncated hexagonal (gidpithexah)t0,1,2,3{6,3,3}(1)(4.6.6)(1)(4.4.6)(1)(4.4.12)(1)(4.6.12)
Alternated forms
#Honeycomb name Coxeter diagram: Schläfli symbolCells by location(and count around each vertex)Vertex figurePicture
1234Alt
[137]alternated hexagonal (ahexah) ( ↔ ) = --(4)(3.3.3.3.3.3)(4)(3.3.3) (3.6.6)
[138]cantic hexagonal (tahexah) ↔ (1)(3.3.3.3)-(2)(3.6.3.6)(2)(3.6.6)
[139]runcic hexagonal (birahexah) ↔ (1)(4.4.4)(1)(4.4.3)(1)(3.3.3.3.3.3)(3)(3.4.3.4)
[140]runcicantic hexagonal (bitahexah) ↔ (1)(3.6.6)(1)(4.4.3)(1)(3.6.3.6)(2)(4.6.6)
Nonuniformsnub rectified order-6 tetrahedral ↔ sr{3,3,6}Irr. (3.3.3)
Nonuniformcantic snub order-6 tetrahedralsr3{3,3,6}
Nonuniformomnisnub order-6 tetrahedralht0,1,2,3{6,3,3}Irr. (3.3.3)

[6,3,4] family

There are 15 forms, generated by ring permutations of the Coxeter group: [6,3,4] or

#Name of honeycombCoxeter diagramSchläfli symbolCells by location and count per vertexVertex figurePicture
0123
16(Regular) order-4 hexagonal (shexah){6,3,4}---(8)(6.6.6) (3.3.3.3)
17rectified order-4 hexagonal (rishexah)t1{6,3,4} or r{6,3,4}(2)(3.3.3.3)--(4)(3.6.3.6) (4.4.4)
18rectified order-6 cubic (rihach)t1{4,3,6} or r{4,3,6}(6)(3.4.3.4)--(2)(3.3.3.3.3.3) (6.4.4)
19order-6 cubic (hachon){4,3,6}(20)(4.4.4)--- (3.3.3.3.3.3)
20truncated order-4 hexagonal (tishexah)t0,1{6,3,4} or t{6,3,4}(1)(3.3.3.3)--(4)(3.12.12)
21bitruncated order-6 cubic (chexah)t1,2{6,3,4} or 2t{6,3,4}(2)(4.6.6)--(2)(6.6.6)
22truncated order-6 cubic (thach)t0,1{4,3,6} or t{4,3,6}(6)(3.8.8)--(1)(3.3.3.3.3.3)
23cantellated order-4 hexagonal (srishexah)t0,2{6,3,4} or rr{6,3,4}(1)(3.4.3.4)(2)(4.4.4)-(2)(3.4.6.4)
24cantellated order-6 cubic (srihach)t0,2{4,3,6} or rr{4,3,6}(2)(3.4.4.4)-(2)(4.4.6)(1)(3.6.3.6)
25runcinated order-6 cubic (sidpichexah)t0,3{6,3,4}(1)(4.4.4)(3)(4.4.4)(3)(4.4.6)(1)(6.6.6)
26cantitruncated order-4 hexagonal (grishexah)t0,1,2{6,3,4} or tr{6,3,4}(1)(4.6.6)(1)(4.4.4)-(2)(4.6.12)
27cantitruncated order-6 cubic (grihach)t0,1,2{4,3,6} or tr{4,3,6}(2)(4.6.8)-(1)(4.4.6)(1)(6.6.6)
28runcitruncated order-4 hexagonal (prihach)t0,1,3{6,3,4}(1)(3.4.4.4)(1)(4.4.4)(2)(4.4.12)(1)(3.12.12)
29runcitruncated order-6 cubic (prishexah)t0,1,3{4,3,6}(1)(3.8.8)(2)(4.4.8)(1)(4.4.6)(1)(3.4.6.4)
30omnitruncated order-6 cubic (gidpichexah)t0,1,2,3{6,3,4}(1)(4.6.8)(1)(4.4.8)(1)(4.4.12)(1)(4.6.12)
Alternated forms
#Name of honeycombCoxeter diagramSchläfli symbolCells by location and count per vertexVertex figurePicture
0123Alt
[87]alternated order-6 cubic (ahach) ↔ h{4,3,6} (3.3.3)   (3.3.3.3.3.3)(3.6.3.6)
[88]cantic order-6 cubic (tachach) ↔ h2{4,3,6}(2)(3.6.6)--(1)(3.6.3.6)(2)(6.6.6)
[89]runcic order-6 cubic (birachach) ↔ h3{4,3,6}(1)(3.3.3)--(1)(6.6.6)(3)(3.4.6.4)
[90]runcicantic order-6 cubic (bitachach) ↔ h2,3{4,3,6}(1)(3.6.6)--(1)(3.12.12)(2)(4.6.12)
[141]alternated order-4 hexagonal (ashexah) ↔ ↔ h{6,3,4}--(3.3.3.3.3.3)(3.3.3.3) (4.6.6)
[142]cantic order-4 hexagonal (tashexah) ↔ ↔ h1{6,3,4}(1)(3.4.3.4)-(2)(3.6.3.6)(2)(4.6.6)
[143]runcic order-4 hexagonal (birashexah) ↔ h3{6,3,4}(1)(4.4.4)(1)(4.4.3)(1)(3.3.3.3.3.3)(3)(3.4.4.4)
[144]runcicantic order-4 hexagonal (bitashexah) ↔ h2,3{6,3,4}(1)(3.8.8)(1)(4.4.3)(1)(3.6.3.6)(2)(4.6.8)
[151]quarter order-4 hexagonal (quishexah) ↔ q{6,3,4}(3)(1)-(1)(3)
Nonuniformbisnub order-6 cubic ↔ 2s{4,3,6}(3.3.3.3.3)--(3.3.3.3.3.3)+(3.3.3)
Nonuniformruncic bisnub order-6 cubic
Nonuniformsnub rectified order-6 cubic ↔ sr{4,3,6}(3.3.3.3.3)(3.3.3)(3.3.3.3)(3.3.3.3.6)+(3.3.3)
Nonuniformruncic snub rectified order-6 cubicsr3{4,3,6}
Nonuniformsnub rectified order-4 hexagonal ↔ sr{6,3,4}(3.3.3.3.3.3)(3.3.3)-(3.3.3.3.6)+(3.3.3)
Nonuniformruncisnub rectified order-4 hexagonalsr3{6,3,4}
Nonuniformomnisnub rectified order-6 cubicht0,1,2,3{6,3,4}(3.3.3.3.4)(3.3.3.4)(3.3.3.6)(3.3.3.3.6)+(3.3.3)

[6,3,5] family

#Honeycomb nameCoxeter diagramSchläfli symbolCells by location(and count around each vertex)Vertex figurePicture
0123
31order-5 hexagonal (phexah){6,3,5}---(20)(6)3 Icosahedron
32rectified order-5 hexagonal (riphexah)t1{6,3,5} or r{6,3,5}(2)(3.3.3.3.3)--(5)(3.6)2 (5.4.4)
33rectified order-6 dodecahedral (rihed)t1{5,3,6} or r{5,3,6}(5)(3.5.3.5)--(2)(3)6 (6.4.4)
34order-6 dodecahedral (hedhon){5,3,6}(5.5.5)---(∞) (3)6
35truncated order-5 hexagonal (tiphexah)t0,1{6,3,5} or t{6,3,5}(1)(3.3.3.3.3)--(5)3.12.12
36cantellated order-5 hexagonal (sriphexah)t0,2{6,3,5} or rr{6,3,5}(1)(3.5.3.5)(2)(5.4.4)-(2)3.4.6.4
37runcinated order-6 dodecahedral (sidpidohexah)t0,3{6,3,5}(1)(5.5.5)-(6)(6.4.4)(1)(6)3
38cantellated order-6 dodecahedral (srihed)t0,2{5,3,6} or rr{5,3,6}(2)(4.3.4.5)-(2)(6.4.4)(1)(3.6)2
39bitruncated order-6 dodecahedral (dohexah)t1,2{6,3,5} or 2t{6,3,5}(2)(5.6.6)--(2)(6)3
40truncated order-6 dodecahedral (thed)t0,1{5,3,6} or t{5,3,6}(6)(3.10.10)--(1)(3)6
41cantitruncated order-5 hexagonal (griphexah)t0,1,2{6,3,5} or tr{6,3,5}(1)(5.6.6)(1)(5.4.4)-(2)4.6.10
42runcitruncated order-5 hexagonal (prihed)t0,1,3{6,3,5}(1)(4.3.4.5)(1)(5.4.4)(2)(12.4.4)(1)3.12.12
43runcitruncated order-6 dodecahedral (priphaxh)t0,1,3{5,3,6}(1)(3.10.10)(1)(10.4.4)(2)(6.4.4)(1)3.4.6.4
44cantitruncated order-6 dodecahedral (grihed)t0,1,2{5,3,6} or tr{5,3,6}(1)(4.6.10)-(2)(6.4.4)(1)(6)3
45omnitruncated order-6 dodecahedral (gidpidohaxh)t0,1,2,3{6,3,5}(1)(4.6.10)(1)(10.4.4)(1)(12.4.4)(1)4.6.12
Alternated forms
#Honeycomb nameCoxeter diagramSchläfli symbolCells by location(and count around each vertex)Vertex figurePicture
0123Alt
[145]alternated order-5 hexagonal (aphexah) ↔ h{6,3,5}---(20)(3)6(12)(3)5 (5.6.6)
[146]cantic order-5 hexagonal (taphexah) ↔ h2{6,3,5}(1)(3.5.3.5)-(2)(3.6.3.6)(2)(5.6.6)
[147]runcic order-5 hexagonal (biraphexah) ↔ h3{6,3,5}(1)(5.5.5)(1)(4.4.3)(1)(3.3.3.3.3.3)(3)(3.4.5.4)
[148]runcicantic order-5 hexagonal (bitaphexah) ↔ h2,3{6,3,5}(1)(3.10.10)(1)(4.4.3)(1)(3.6.3.6)(2)(4.6.10)
Nonuniformsnub rectified order-6 dodecahedral ↔ sr{5,3,6}(3.3.5.3.5)-(3.3.3.3)(3.3.3.3.3.3)irr. tet
Nonuniformomnisnub order-5 hexagonalht0,1,2,3{6,3,5}(3.3.5.3.5)(3.3.3.5)(3.3.3.6)(3.3.6.3.6)irr. tet

[6,3,6] family

There are 9 forms, generated by ring permutations of the Coxeter group: [6,3,6] or

#Name of honeycombCoxeter diagramSchläfli symbolCells by location and count per vertexVertex figurePicture
0123
46order-6 hexagonal (hihexah){6,3,6}---(20) (6.6.6) (3.3.3.3.3.3)
47rectified order-6 hexagonal (rihihexah)t1{6,3,6} or r{6,3,6}(2) (3.3.3.3.3.3)--(6)(3.6.3.6) (6.4.4)
48truncated order-6 hexagonal (thihexah)t0,1{6,3,6} or t{6,3,6}(1)(3.3.3.3.3.3)--(6)(3.12.12)
49cantellated order-6 hexagonal (srihihexah)t0,2{6,3,6} or rr{6,3,6}(1)(3.6.3.6)(2)(4.4.6)-(2)(3.6.4.6)
50Runcinated order-6 hexagonal (spiddihexah)t0,3{6,3,6}(1)(6.6.6)(3)(4.4.6)(3)(4.4.6)(1)(6.6.6)
51cantitruncated order-6 hexagonal (grihihexah)t0,1,2{6,3,6} or tr{6,3,6}(1)(6.6.6)(1)(4.4.6)-(2)(4.6.12)
52runcitruncated order-6 hexagonal (prihihexah)t0,1,3{6,3,6}(1)(3.6.4.6)(1)(4.4.6)(2)(4.4.12)(1)(3.12.12)
53omnitruncated order-6 hexagonal (gidpiddihexah)t0,1,2,3{6,3,6}(1)(4.6.12)(1)(4.4.12)(1)(4.4.12)(1)(4.6.12)
[1]bitruncated order-6 hexagonal (hexah) ↔ ↔ t1,2{6,3,6} or 2t{6,3,6}(2)(6.6.6)--(2)(6.6.6)
Alternated forms
#Name of honeycombCoxeter diagramSchläfli symbolCells by location and count per vertexVertex figurePicture
0123Alt
[47]rectified order-6 hexagonal (rihihexah) ↔ ↔ q{6,3,6} = r{6,3,6}(2) (3.3.3.3.3.3)--(6)(3.6.3.6) (6.4.4)
[54]triangular (trah)( ↔ ) = h{6,3,6} = {3,6,3}---(3.3.3.3.3.3)(3.3.3.3.3.3) {6,3}
[55]cantic order-6 hexagonal (ritrah) ( ↔ ) = h2{6,3,6} = r{3,6,3}(1)(3.6.3.6)-(2)(6.6.6)(2)(3.6.3.6)
[149]runcic order-6 hexagonal ↔ h3{6,3,6}(1)(6.6.6)(1)(4.4.3)(3)(3.4.6.4)(1)(3.3.3.3.3.3)
[150]runcicantic order-6 hexagonal ↔ h2,3{6,3,6}(1)(3.12.12)(1)(4.4.3)(2)(4.6.12)(1)(3.6.3.6)
[137]alternated hexagonal (ahexah)( ↔ ↔ ) = 2s{6,3,6} = h{6,3,3}(3.3.3.3.6)--(3.3.3.3.6)+(3.3.3) (3.6.6)
Nonuniformsnub rectified order-6 hexagonalsr{6,3,6}(3.3.3.3.3.3)(3.3.3.3)-(3.3.3.3.6)+(3.3.3)
Nonuniformalternated runcinated order-6 hexagonalht0,3{6,3,6}(3.3.3.3.3.3)(3.3.3.3)(3.3.3.3)(3.3.3.3.3.3)+(3.3.3)
Nonuniformomnisnub order-6 hexagonalht0,1,2,3{6,3,6}(3.3.3.3.6)(3.3.3.6)(3.3.3.6)(3.3.3.3.6)+(3.3.3)

[3,6,3] family

There are 9 forms, generated by ring permutations of the Coxeter group: [3,6,3] or

#Honeycomb nameCoxeter diagramand Schläfli symbolCell counts/vertexand positions in honeycombVertex figurePicture
0123
54triangular (trah){3,6,3}---(∞){3,6} {6,3}
55rectified triangular (ritrah)t1{3,6,3} or r{3,6,3}(2)(6)3--(3)(3.6)2(3.4.4)
56cantellated triangular (sritrah)t0,2{3,6,3} or rr{3,6,3}(1)(3.6)2(2)(4.4.3)-(2)(3.6.4.6)
57runcinated triangular (spidditrah)t0,3{3,6,3}(1)(3)6(6)(4.4.3)(6)(4.4.3)(1)(3)6
58bitruncated triangular (ditrah)t1,2{3,6,3} or 2t{3,6,3}(2)(3.12.12)--(2)(3.12.12)
59cantitruncated triangular (gritrah)t0,1,2{3,6,3} or tr{3,6,3}(1)(3.12.12)(1)(4.4.3)-(2)(4.6.12)
60runcitruncated triangular (pritrah)t0,1,3{3,6,3}(1)(3.6.4.6)(1)(4.4.3)(2)(4.4.6)(1)(6)3
61omnitruncated triangular (gipidditrah)t0,1,2,3{3,6,3}(1)(4.6.12)(1)(4.4.6)(1)(4.4.6)(1)(4.6.12)
[1]truncated triangular (hexah) ↔ ↔ t0,1{3,6,3} or t{3,6,3} = {6,3,3}(1)(6)3--(3)(6)3 {3,3}
Alternated forms
#Honeycomb nameCoxeter diagramand Schläfli symbolCell counts/vertexand positions in honeycombVertex figurePicture
0123Alt
[56]cantellated triangular (sritrah) = s2{3,6,3}(1)(3.6)2--(2)(3.6.4.6)(3.4.4)
[60]runcitruncated triangular (pritrah) = s2,3{3,6,3}(1)(6)3-(1)(4.4.3)(1)(3.6.4.6)(2)(4.4.6)
[137]alternated hexagonal (ahexah)( ↔ ) = ( ↔ )s{3,6,3}(3)6--(3)6+(3)3 (3.6.6)
Scaliformruncisnub triangular (pristrah)s3{3,6,3}r{6,3}-(3.4.4)(3)6tricup
Nonuniformomnisnub triangular tiling honeycomb (snatrah)ht0,1,2,3{3,6,3}(3.3.3.3.6)(3)4(3)4(3.3.3.3.6)+(3)3

[4,4,3] family

There are 15 forms, generated by ring permutations of the Coxeter group: [4,4,3] or

#Honeycomb nameCoxeter diagramand Schläfli symbolCell counts/vertexand positions in honeycombVertex figurePicture
0123
62square (squah) = {4,4,3}---(6) Cube
63rectified square (risquah) = t1{4,4,3} or r{4,4,3}(2)--(3)Triangular prism
64rectified order-4 octahedral (rocth)t1{3,4,4} or r{3,4,4}(4)--(2)
65order-4 octahedral (octh){3,4,4}(∞)---
66truncated square (tisquah) = t0,1{4,4,3} or t{4,4,3}(1)--(3)
67truncated order-4 octahedral (tocth)t0,1{3,4,4} or t{3,4,4}(4)--(1)
68bitruncated square (osquah)t1,2{4,4,3} or 2t{4,4,3}(2)--(2)
69cantellated square (srisquah)t0,2{4,4,3} or rr{4,4,3}(1)(2)-(2)
70cantellated order-4 octahedral (srocth)t0,2{3,4,4} or rr{3,4,4}(2)-(2)(1)
71runcinated square (sidposquah)t0,3{4,4,3}(1)(3)(3)(1)
72cantitruncated square (grisquah)t0,1,2{4,4,3} or tr{4,4,3}(1) (1) -(2)
73cantitruncated order-4 octahedral (grocth)t0,1,2{3,4,4} or tr{3,4,4}(2) -(1) (1)
74runcitruncated square (procth)t0,1,3{4,4,3}(1)(1)(2)(1)
75runcitruncated order-4 octahedral (prisquah)t0,1,3{3,4,4}(1)(2)(1)(1)
76omnitruncated square (gidposquah)t0,1,2,3{4,4,3}(1)(1)(1)(1)
Alternated forms
#Honeycomb nameCoxeter diagramand Schläfli symbolCell counts/vertexand positions in honeycombVertex figurePicture
0123Alt
[83]alternated square ↔ h{4,4,3}---(6)(8)
[84]cantic square ↔ h2{4,4,3}(1)--(2)(2)
[85]runcic square ↔ h3{4,4,3}(1)--(1).(4)
[86]runcicantic square(1)--(1)(2)
[153]alternated rectified square ↔ hr{4,4,3}--{}x{3}
157--{}x{6}
Scaliformsnub order-4 octahedral = = s{3,4,4} -- {}v{4}
Scaliformruncisnub order-4 octahedrals3{3,4,4} cup-4
152snub square = s{4,4,3}--{3,3}
Nonuniformsnub rectified order-4 octahedralsr{3,4,4} - irr. {3,3}
Nonuniformalternated runcitruncated squareht0,1,3{3,4,4} irr. {}v{4}
Nonuniformomnisnub squareht0,1,2,3{4,4,3}irr. {3,3}

[4,4,4] family

There are 9 forms, generated by ring permutations of the Coxeter group: [4,4,4] or .

#Honeycomb nameCoxeter diagramand Schläfli symbolCell counts/vertexand positions in honeycombSymmetryVertex figurePicture
0123
77order-4 square (sisquah){4,4,4}---[4,4,4]Cube
78truncated order-4 square (tissish)t0,1{4,4,4} or t{4,4,4}--[4,4,4]
79bitruncated order-4 square (dish)t1,2{4,4,4} or 2t{4,4,4}--[[4,4,4]]
80runcinated order-4 square (spiddish)t0,3{4,4,4}[[4,4,4]]
81runcitruncated order-4 square (prissish)t0,1,3{4,4,4}[4,4,4]
82omnitruncated order-4 square (gipiddish)t0,1,2,3{4,4,4}[[4,4,4]]
[62]square (squah) ↔ t1{4,4,4} or r{4,4,4}--[4,4,4]Square tiling
[63]rectified square (risquah) ↔ t0,2{4,4,4} or rr{4,4,4}-[4,4,4]
[66]truncated order-4 square (tisquah) ↔ t0,1,2{4,4,4} or tr{4,4,4}-[4,4,4]
Alternated constructions
#Honeycomb nameCoxeter diagramand Schläfli symbolCell counts/vertexand positions in honeycombSymmetryVertex figurePicture
0123Alt
[62]Square (squah)( ↔ ↔ ↔ ) = (4.4.4.4)--(4.4.4.4)[1+,4,4,4]=[4,4,4]
[63]rectified square (risquah) = s2{4,4,4}-[4+,4,4]
[77]order-4 square (sisquah) ↔ ↔ ↔ ---[1+,4,4,4]=[4,4,4]Cube
[78]truncated order-4 square (tissish) ↔ ↔ ↔ (4.8.8)-(4.8.8)-(4.4.4.4)[1+,4,4,4]=[4,4,4]
[79]bitruncated order-4 square (dish) ↔ ↔ ↔ (4.8.8)--(4.8.8)(4.8.8)[1+,4,4,4]=[4,4,4]
[81]runcitruncated order-4 square tiling (prissish) = s2,3{4,4,4}[4,4,4]
[83]alternated square( ↔ ) ↔ hr{4,4,4}--[4,1+,4,4](4.3.4.3)
[104]quarter order-4 square ↔ q{4,4,4}[[1+,4,4,4,1+]]=[[4[4]]]
153alternated rectified square tiling ↔ ↔ hrr{4,4,4}-[((2+,4,4)),4]
154alternated runcinated order-4 square tilinght0,3{4,4,4}[[(4,4,4,2+)]]
Scaliformsnub order-4 square tilings{4,4,4}--[4+,4,4]
Nonuniformruncic snub order-4 square tilings3{4,4,4}[4+,4,4]
Nonuniformbisnub order-4 square tiling2s{4,4,4}--[[4,4+,4]]
[152]snub square tiling ↔ sr{4,4,4}-[(4,4)+,4]
Nonuniformalternated runcitruncated order-4 square tilinght0,1,3{4,4,4}[((2,4)+,4,4)]
Nonuniformomnisnub order-4 square tilinght0,1,2,3{4,4,4}[[4,4,4]]+

Tridental graphs

[3,41,1] family

There are 11 forms (of which only 4 are not shared with the [4,4,3] family), generated by ring permutations of the Coxeter group:

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
010'3
83alternated square--(4.4.4)(4.4.4.4)(4.3.4.3)
84cantic square(3.4.3.4)-(3.8.8)(4.8.8)
85runcic square(4.4.4.4)-(3.4.4.4)(4.4.4.4)
86runcicantic square(4.6.6)-(3.4.4.4)(4.8.8)
[63]rectified square (risquah) ↔ (4.4.4)-(4.4.4)(4.4.4.4)
[64]rectified order-4 octahedral (rocth) ↔ (3.4.3.4)-(3.4.3.4)(4.4.4.4)
[65]order-4 octahedral (octh) ↔ (4.4.4.4)-(4.4.4.4)-
[67]truncated order-4 octahedral (tocth) ↔ (4.6.6)-(4.6.6)(4.4.4.4)
[68]bitruncated square (osquah) ↔ (3.8.8)-(3.8.8)(4.8.8)
[70]cantellated order-4 octahedral (srocth) ↔ (3.4.4.4)(4.4.4)(3.4.4.4)(4.4.4.4)
[73]cantitruncated order-4 octahedral (grocth) ↔ (4.6.8)(4.4.4)(4.6.8)(4.8.8)
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
010'3Alt
Scaliformsnub order-4 octahedral = = s{3,41,1}--irr. {}v{4}
Nonuniformsnub rectified order-4 octahedral ↔ sr{3,41,1}(3.3.3.3.4)(3.3.3)(3.3.3.3.4)(3.3.4.3.4)+(3.3.3)

[4,41,1] family

There are 7 forms, (all shared with [4,4,4] family), generated by ring permutations of the Coxeter group:

#Honeycomb nameCoxeter diagramCells by locationVertex figurePicture
010'3
[62]Square (squah)( ↔ ) = (4.4.4.4)-(4.4.4.4)(4.4.4.4)
[62]Square (squah)( ↔ ) = (4.4.4.4)-(4.4.4.4)(4.4.4.4)
[63]rectified square (risquah)( ↔ ) = (4.4.4.4)(4.4.4)(4.4.4.4)(4.4.4.4)
[66]truncated square (tisquah) ( ↔ ) = (4.8.8)(4.4.4)(4.8.8)(4.8.8)
[77]order-4 square (sisquah) ↔ (4.4.4.4)-(4.4.4.4)-
[78]truncated order-4 square (tissish) ↔ (4.8.8)-(4.8.8)(4.4.4.4)
[79]bitruncated order-4 square (dish) ↔ (4.8.8)-(4.8.8)(4.8.8)
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
010'3Alt
[77]order-4 square (sisquah)( ↔ ↔ ) = --Cube
[78]truncated order-4 square (tissish)( ↔ ) = ( ↔ )
[83]Alternated square-
ScaliformSnub order-4 square-
Nonuniform-
Nonuniform-
[153]( ↔ )= ( ↔ )
NonuniformSnub square ↔ ↔ (3.3.4.3.4)(3.3.3)(3.3.4.3.4)(3.3.4.3.4)+(3.3.3)

[6,31,1] family

There are 11 forms (and only 4 not shared with [6,3,4] family), generated by ring permutations of the Coxeter group: [6,31,1] or .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
010'3
87alternated order-6 cubic (ahach) ↔ --(∞)(3.3.3.3.3)(∞)(3.3.3)(3.6.3.6)
88cantic order-6 cubic (tachach) ↔ (1)(3.6.3.6)-(2)(6.6.6)(2)(3.6.6)
89runcic order-6 cubic (birachach) ↔ (1)(6.6.6)-(3)(3.4.6.4)(1)(3.3.3)
90runcicantic order-6 cubic (bitachach) ↔ (1)(3.12.12)-(2)(4.6.12)(1)(3.6.6)
[16]order-4 hexagonal (shexah) ↔ (4)(6.6.6)-(4)(6.6.6)- (3.3.3.3)
[17]rectified order-4 hexagonal (rishexah) ↔ (2)(3.6.3.6)-(2)(3.6.3.6)(2)(3.3.3.3)
[18]rectified order-6 cubic (rihach) ↔ (1)(3.3.3.3.3)-(1)(3.3.3.3.3)(6)(3.4.3.4)
[20]truncated order-4 hexagonal (tishexah) ↔ (2)(3.12.12)-(2)(3.12.12)(1)(3.3.3.3)
[21]bitruncated order-6 cubic (chexah) ↔ (1)(6.6.6)-(1)(6.6.6)(2)(4.6.6)
[24]cantellated order-6 cubic (srihach) ↔ (1)(3.4.6.4)(2)(4.4.4)(1)(3.4.6.4)(1)(3.4.3.4)
[27]cantitruncated order-6 cubic (grihach) ↔ (1)(4.6.12)(1)(4.4.4)(1)(4.6.12)(1)(4.6.6)
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
010'3Alt
[141]alternated order-4 hexagonal (ashexah) ↔ ↔ ↔ (4.6.6)
Nonuniformbisnub order-4 hexagonal ↔
Nonuniformsnub rectified order-4 hexagonal ↔ (3.3.3.3.6)(3.3.3)(3.3.3.3.6)(3.3.3.3.3)+(3.3.3)

Cyclic graphs

[(4,4,3,3)] family

There are 11 forms, 4 unique to this family, generated by ring permutations of the Coxeter group: , with ↔ .

#Honeycomb nameCoxeter diagramCells by locationVertex figurePicture
0123
91tetrahedral-square-(6)(444)(8)(333)(12)(3434)(3444)
92cyclotruncated square-tetrahedral(444)(488)(333)(388)
93cyclotruncated tetrahedral-square(1)(3333)(1)(444)(4)(366)(4)(466)
94truncated tetrahedral-square(1)(3444)(1)(488)(1)(366)(2)(468)
[64]( ↔ ) = rectified order-4 octahedral (rocth)(3434)(4444)(3434)(3434)
[65]( ↔ ) = order-4 octahedral (octh)(3333)-(3333)(3333)
[67]( ↔ ) = truncated order-4 octahedral (tocth)(466)(4444)(3434)(466)
[83]alternated square( ↔ ) = (444)(4444)-(444)(4.3.4.3)
[84]cantic square( ↔ ) = (388)(488)(3434)(388)
[85]runcic square( ↔ ) = (3444)(3434)(3333)(3444)
[86]runcicantic square( ↔ ) = (468)(488)(466)(468)
#Honeycomb nameCoxeter diagramCells by locationVertex figurePicture
0123Alt
Scaliformsnub order-4 octahedral = = --irr. {}v{4}
Nonuniform
155alternated tetrahedral-square ↔ r{4,3}

[(4,4,4,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
0123
95cubic-square(8)(4.4.4)-(6)(4.4.4.4)(12)(4.4.4.4)(3.4.4.4)
96octahedral-square(3.4.3.4)(3.3.3.3)-(4.4.4.4)(4.4.4.4)
97cyclotruncated cubic-square(4)(3.8.8)(1)(3.3.3.3)(1)(4.4.4.4)(4)(4.8.8)
98cyclotruncated square-cubic(1)(4.4.4)(1)(4.4.4)(3)(4.8.8)(3)(4.8.8)
99cyclotruncated octahedral-square(4)(4.6.6)(4)(4.6.6)(1)(4.4.4.4)(1)(4.4.4.4)
100rectified cubic-square(1)(3.4.3.4)(2)(3.4.4.4)(1)(4.4.4.4)(2)(4.4.4.4)
101truncated cubic-square(1)(4.8.8)(1)(3.4.4.4)(2)(4.8.8)(1)(4.8.8)
102truncated octahedral-square(2)(4.6.8(1)(4.6.6)(1)(4.4.4.4)(1)(4.8.8)
103omnitruncated octahedral-square(1)(4.6.8)(1)(4.6.8)(1)(4.8.8)(1)(4.8.8)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figure
0123Alt
156alternated cubic-square ↔ -(3.4.4.4)
Nonuniformsnub octahedral-square
Nonuniformcyclosnub square-cubic
Nonuniformcyclosnub octahedral-square
Nonuniformomnisnub cubic-square(3.3.3.3.4)(3.3.3.3.4)(3.3.4.3.4)(3.3.4.3.4)+(3.3.3)

[(4,4,4,4)] family

There are 5 forms, 1 unique, generated by ring permutations of the Coxeter group: . Repeat constructions are related as: ↔ , ↔ , and ↔ .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
0123
104quarter order-4 square(4.8.8)(4.4.4.4)(4.4.4.4)(4.8.8)
[62]square (squah) ↔ ↔ (4.4.4.4)(4.4.4.4)(4.4.4.4)(4.4.4.4)
[77]order-4 square (sisquah)( ↔ ) = (4.4.4.4)-(4.4.4.4)(4.4.4.4)(4.4.4.4)
[78]truncated order-4 square (tissish)( ↔ ) = (4.8.8)(4.4.4.4)(4.8.8)(4.8.8)
[79]bitruncated order-4 square (dish) ↔ (4.8.8)(4.8.8)(4.8.8)(4.8.8)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figure
0123Alt
[83]alternated square( ↔ ↔ ) = (6)(4.4.4.4)(6)(4.4.4.4)(6)(4.4.4.4)(6)(4.4.4.4)(8)(4.4.4)(4.3.4.3)
[77]alternated order-4 square (sisquah) ↔ -
158cantic order-4 square ↔
Nonuniformcyclosnub square
Nonuniformsnub order-4 square
Nonuniformbisnub order-4 square ↔ (3.3.4.3.4)(3.3.4.3.4)(3.3.4.3.4)(3.3.4.3.4)+(3.3.3)

[(6,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figure
0123
105tetrahedral-hexagonal(4)(3.3.3)-(4)(6.6.6)(6)(3.6.3.6) (3.4.3.4)
106tetrahedral-triangular(3.3.3.3)(3.3.3)-(3.3.3.3.3.3) (3.4.6.4)
107cyclotruncated tetrahedral-hexagonal(3)(3.6.6)(1)(3.3.3)(1)(6.6.6)(3)(6.6.6)
108cyclotruncated hexagonal-tetrahedral(1)(3.3.3)(1)(3.3.3)(4)(3.12.12)(4)(3.12.12)
109cyclotruncated tetrahedral-triangular(6)(3.6.6)(6)(3.6.6)(1)(3.3.3.3.3.3)(1)(3.3.3.3.3.3)
110rectified tetrahedral-hexagonal(1)(3.3.3.3)(2)(3.4.3.4)(1)(3.6.3.6)(2)(3.4.6.4)
111truncated tetrahedral-hexagonal(1)(3.6.6)(1)(3.4.3.4)(1)(3.12.12)(2)(4.6.12)
112truncated tetrahedral-triangular(2)(4.6.6)(1)(3.6.6)(1)(3.4.6.4)(1)(6.6.6)
113omnitruncated tetrahedral-hexagonal(1)(4.6.6)(1)(4.6.6)(1)(4.6.12)(1)(4.6.12)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figure
0123Alt
Nonuniformomnisnub tetrahedral-hexagonal(3.3.3.3.3)(3.3.3.3.3)(3.3.3.3.6)(3.3.3.3.6)+(3.3.3)

[(6,3,4,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group:

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figure
0123
114octahedral-hexagonal(6)(3.3.3.3)-(8)(6.6.6)(12)(3.6.3.6)
115cubic-triangular(∞)(3.4.3.4)(∞)(4.4.4)-(∞)(3.3.3.3.3.3) (3.4.6.4)
116cyclotruncated octahedral-hexagonal(3)(4.6.6)(1)(4.4.4)(1)(6.6.6)(3)(6.6.6)
117cyclotruncated hexagonal-octahedral(1)(3.3.3.3)(1)(3.3.3.3)(4)(3.12.12)(4)(3.12.12)
118cyclotruncated cubic-triangular(6)(3.8.8)(6)(3.8.8)(1)(3.3.3.3.3.3)(1)(3.3.3.3.3.3)
119rectified octahedral-hexagonal(1)(3.4.3.4)(2)(3.4.4.4)(1)(3.6.3.6)(2)(3.4.6.4)
120truncated octahedral-hexagonal(1)(4.6.6)(1)(3.4.4.4)(1)(3.12.12)(2)(4.6.12)
121truncated cubic-triangular(2)(4.6.8)(1)(3.8.8)(1)(3.4.6.4)(1)(6.6.6)
122omnitruncated octahedral-hexagonal(1)(4.6.8)(1)(4.6.8)(1)(4.6.12)(1)(4.6.12)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figure
0123Alt
Nonuniformcyclosnub octahedral-hexagonal(3.3.3.3.3)(3.3.3)(3.3.3.3.3.3)(3.3.3.3.3.3)irr. {3,4}
Nonuniformomnisnub octahedral-hexagonal(3.3.3.3.4)(3.3.3.3.4)(3.3.3.3.6)(3.3.3.3.6)irr. {3,3}

[(6,3,5,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group:

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
0123
123icosahedral-hexagonal(6)(3.3.3.3.3)-(8)(6.6.6)(12)(3.6.3.6)3.4.5.4
124dodecahedral-triangular(30)(3.5.3.5)(20)(5.5.5)-(12)(3.3.3.3.3.3)(3.4.6.4)
125cyclotruncated icosahedral-hexagonal(3)(5.6.6)(1)(5.5.5)(1)(6.6.6)(3)(6.6.6)
126cyclotruncated hexagonal-icosahedral(1)(3.3.3.3.3)(1)(3.3.3.3.3)(5)(3.12.12)(5)(3.12.12)
127cyclotruncated dodecahedral-triangular(6)(3.10.10)(6)(3.10.10)(1)(3.3.3.3.3.3)(1)(3.3.3.3.3.3)
128rectified icosahedral-hexagonal(1)(3.5.3.5)(2)(3.4.5.4)(1)(3.6.3.6)(2)(3.4.6.4)
129truncated icosahedral-hexagonal(1)(5.6.6)(1)(3.5.5.5)(1)(3.12.12)(2)(4.6.12)
130truncated dodecahedral-triangular(2)(4.6.10)(1)(3.10.10)(1)(3.4.6.4)(1)(6.6.6)
131omnitruncated icosahedral-hexagonal(1)(4.6.10)(1)(4.6.10)(1)(4.6.12)(1)(4.6.12)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
0123Alt
Nonuniformomnisnub icosahedral-hexagonal(3.3.3.3.5)(3.3.3.3.5)(3.3.3.3.6)(3.3.3.3.6)+(3.3.3)

[(6,3,6,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group: .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
0123
132hexagonal-triangular(3.3.3.3.3.3)-(6.6.6)(3.6.3.6)(3.4.6.4)
133cyclotruncated hexagonal-triangular(1)(3.3.3.3.3.3)(1)(3.3.3.3.3.3)(3)(3.12.12)(3)(3.12.12)
134cyclotruncated triangular-hexagonal(1)(3.6.3.6)(2)(3.4.6.4)(1)(3.6.3.6)(2)(3.4.6.4)
135rectified hexagonal-triangular(1)(6.6.6)(1)(3.4.6.4)(1)(3.12.12)(2)(4.6.12)
136truncated hexagonal-triangular(1)(4.6.12)(1)(4.6.12)(1)(4.6.12)(1)(4.6.12)
[16]order-4 hexagonal tiling (shexah)=(3)(6.6.6)(1)(6.6.6)(1)(6.6.6)(3)(6.6.6)(3.3.3.3)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
0123Alt
[141]alternated order-4 hexagonal (ashexah) ↔ ↔ ↔ (3.3.3.3.3.3)(3.3.3.3.3.3)(3.3.3.3.3.3)(3.3.3.3.3.3)+(3.3.3.3)(4.6.6)
Nonuniformcyclocantisnub hexagonal-triangular
Nonuniformcycloruncicantisnub hexagonal-triangular
Nonuniformsnub rectified hexagonal-triangular(3.3.3.3.6)(3.3.3.3.6)(3.3.3.3.6)(3.3.3.3.6)+(3.3.3)

Loop-n-tail graphs

[3,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [3,3[3]] or . 7 are half symmetry forms of [3,3,6]: ↔ .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)vertex figurePicture
010'3
137alternated hexagonal (ahexah)( ↔ ) = --(3.3.3)(3.3.3.3.3.3) (3.6.6)
138cantic hexagonal (tahexah) ↔ (1)(3.3.3.3)-(2)(3.6.6)(2)(3.6.3.6)
139runcic hexagonal (birahexah) ↔ (1)(4.4.4)(1)(4.4.3)(3)(3.4.3.4)(1)(3.3.3.3.3.3)
140runcicantic hexagonal (bitahexah) ↔ (1)(3.10.10)(1)(4.4.3)(2)(4.6.6)(1)(3.6.3.6)
[2]rectified hexagonal (rihexah) ↔ (1)(3.3.3)-(1)(3.3.3)(6)(3.6.3.6) Triangular prism
[3]rectified order-6 tetrahedral (rath) ↔ (2)(3.3.3.3)-(2)(3.3.3.3)(2)(3.3.3.3.3.3) Hexagonal prism
[4]order-6 tetrahedral (thon) ↔ (4)(4.4.4)-(4)(4.4.4)-
[8]cantellated order-6 tetrahedral (srath) ↔ (1)(3.3.3.3)(2)(4.4.6)(1)(3.3.3.3)(1)(3.6.3.6)
[9]bitruncated order-6 tetrahedral (tehexah) ↔ (1)(3.6.6)-(1)(3.6.6)(2)(6.6.6)
[10]truncated order-6 tetrahedral (tath) ↔ (2)(3.10.10)-(2)(3.10.10)(1)(3.6.3.6)
[14]cantitruncated order-6 tetrahedral (grath) ↔ (1)(4.6.6)(1)(4.4.6)(1)(4.6.6)(1)(6.6.6)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)vertex figure
010'3Alt
Nonuniformsnub rectified order-6 tetrahedral ↔ (3.3.3.3.3)(3.3.3.3)(3.3.3.3.3)(3.3.3.3.3.3)+(3.3.3)

[4,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [4,3[3]] or . 7 are half symmetry forms of [4,3,6]: ↔ .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)vertex figurePicture
010'3
141alternated order-4 hexagonal (ashexah) ↔ --(3.3.3.3)(3.3.3.3.3.3) (4.6.6)
142cantic order-4 hexagonal (tashexah) ↔ ↔ (1)(3.4.3.4)-(2)(4.6.6)(2)(3.6.3.6)
143runcic order-4 hexagonal (birashexah) ↔ (1)(4.4.4)(1)(4.4.3)(3)(3.4.4.4)(1)(3.3.3.3.3.3)
144runcicantic order-4 hexagonal (bitashexah) ↔ (1)(3.8.8)(1)(4.4.3)(2)(4.6.8)(1)(3.6.3.6)
[16]order-4 hexagonal (shexah) ↔ (4)(4.4.4)-(4)(4.4.4)-
[17]rectified order-4 hexagonal (rishexah) ↔ (1)(3.3.3.3)-(1)(3.3.3.3)(6)(3.6.3.6)
[18]rectified order-6 cubic (rihach) ↔ (2)(3.4.3.4)-(2)(3.4.3.4)(2)(3.3.3.3.3.3)
[21]bitruncated order-4 hexagonal (chexah) ↔ (1)(4.6.6)-(1)(4.6.6)(2)(6.6.6)
[22]truncated order-6 cubic (thach) ↔ (2)(3.8.8)-(2)(3.8.8)(1)(3.6.3.6)
[23]cantellated order-4 hexagonal (srishexah) ↔ (1)(3.4.4.4)(2)(4.4.6)(1)(3.4.4.4)(1)(3.6.3.6)
[26]cantitruncated order-4 hexagonal (grishexah) ↔ (1)(4.6.8)(1)(4.4.6)(1)(4.6.8)(1)(6.6.6)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)vertex figure
010'3Alt
Nonuniformsnub rectified order-4 hexagonal ↔ (3.3.3.3.4)(3.3.3.3)(3.3.3.3.4)(3.3.3.3.3.3)+(3.3.3)

[5,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [5,3[3]] or . 7 are half symmetry forms of [5,3,6]: ↔ .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)vertex figurePicture
010'3
145alternated order-5 hexagonal (aphexah) ↔ --(3.3.3.3.3)(3.3.3.3.3.3) (3.6.3.6)
146cantic order-5 hexagonal (taphexah) ↔ (1)(3.5.3.5)-(2)(5.6.6)(2)(3.6.3.6)
147runcic order-5 hexagonal (biraphexah) ↔ (1)(5.5.5)(1)(4.4.3)(3)(3.4.5.4)(1)(3.3.3.3.3.3)
148runcicantic order-5 hexagonal (bitaphexah) ↔ (1)(3.10.10)(1)(4.4.3)(2)(4.6.10)(1)(3.6.3.6)
[32]rectified order-5 hexagonal (riphexah) ↔ (1)(3.3.3.3.3)-(1)(3.3.3.3.3)(6)(3.6.3.6)
[33]rectified order-6 dodecahedral (rihed) ↔ (2)(3.5.3.5)-(2)(3.5.3.5)(2)(3.3.3.3.3.3)
[34]Order-5 hexagonal (hedhon) ↔ (4)(5.5.5)-(4)(5.5.5)-
[40]truncated order-6 dodecahedral (thed) ↔ (2)(3.10.10)-(2)(3.10.10)(1)(3.6.3.6)
[36]cantellated order-5 hexagonal (sriphexah) ↔ (1)(3.4.5.4)(2)(6.4.4)(1)(3.4.5.4)(1)(3.6.3.6)
[39]bitruncated order-5 hexagonal (dohexah) ↔ (1)(5.6.6)-(1)(5.6.6)(2)(6.6.6)
[41]cantitruncated order-5 hexagonal (griphexah) ↔ (1)(4.6.10)(1)(6.4.4)(1)(4.6.10)(1)(6.6.6)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)vertex figurePicture
010'3Alt
Nonuniformsnub rectified order-5 hexagonal ↔ (3.3.3.3.5)(3.3.3)(3.3.3.3.5)(3.3.3.3.3.3)+(3.3.3)

[6,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [6,3[3]] or . 7 are half symmetry forms of [6,3,6]: ↔ .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)vertex figurePicture
010'3
149runcic order-6 hexagonal(1)(6.6.6)(1)(4.4.3)(3)(3.4.6.4)(1)(3.3.3.3.3.3)
150runcicantic order-6 hexagonal(1)(3.12.12)(1)(4.4.3)(2)(4.6.12)(1)(3.6.3.6)
[1]hexagonal (hexah) ↔ ↔ ↔ (1)(6.6.6)-(1)(6.6.6)(2)(6.6.6)
[46]order-6 hexagonal (hihexah) ↔ (4)(6.6.6)-(4)(6.6.6)-
[47]rectified order-6 hexagonal (rihihexah) ↔ (2)(3.6.3.6)-(2)(3.6.3.6)(2)(3.3.3.3.3.3)
[47]rectified order-6 hexagonal (rihihexah) ↔ (1)(3.3.3.3.3.3)-(1)(3.3.3.3.3.3)(6)(3.6.3.6)
[48]truncated order-6 hexagonal (thihexah) ↔ (2)(3.12.12)-(2)(3.12.12)(1)(3.3.3.3.3.3)
[49]cantellated order-6 hexagonal (srihihexah) ↔ (1)(3.4.6.4)(2)(6.4.4)(1)(3.4.6.4)(1)(3.6.3.6)
[51]cantitruncated order-6 hexagonal (grihihexah) ↔ (1)(4.6.12)(1)(6.4.4)(1)(4.6.12)(1)(6.6.6)
[54]triangular tiling honeycomb (trah)( ↔ ) = --(3.3.3.3.3.3)(3.3.3.3.3.3) (6.6.6)
[55]cantic order-6 hexagonal (ritrah)( ↔ ) = (1)(3.6.3.6)-(2)(6.6.6)(2)(3.6.3.6)
Alternated forms
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)vertex figurePicture
010'3Alt
[54]triangular tiling honeycomb (trah)( ↔ ↔ ) = -- (6.6.6)
[137]alternated hexagonal (ahexah)( ↔ ) = ( ↔ )-+(3.6.6) (3.6.6)
[47]rectified order-6 hexagonal (rihihexah) ↔ ↔ ↔ (3.6.3.6)-(3.6.3.6)(3.3.3.3.3.3)
[55]cantic order-6 hexagonal (ritrah)( ↔ ) = ( ↔ ) = (1)(3.6.3.6)-(2)(6.6.6)(2)(3.6.3.6)
Nonuniformsnub rectified order-6 hexagonal ↔ (3.3.3.3.6)(3.3.3.3) (3.3.3.3.6)(3.3.3.3.3.3)+(3.3.3)

Multicyclic graphs

[3[ ]×[ ]] family

There are 8 forms, 1 unique, generated by ring permutations of the Coxeter group: . Two are duplicated as ↔ , two as ↔ , and three as ↔ .

#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
0123
151Quarter order-4 hexagonal (quishexah) ↔
[17]rectified order-4 hexagonal (rishexah) ↔ ↔ ↔ (4.4.4)
[18]rectified order-6 cubic (rihach) ↔ ↔ ↔ (6.4.4)
[21]bitruncated order-6 cubic (chexah) ↔ ↔ ↔
[87]alternated order-6 cubic (ahach) ↔ ↔ - (3.6.3.6)
[88]cantic order-6 cubic (tachach) ↔ ↔
[141]alternated order-4 hexagonal (ashexah) ↔ ↔ - (4.6.6)
[142]cantic order-4 hexagonal (tashexah) ↔ ↔
#Honeycomb nameCoxeter diagramCells by location(and count around each vertex)Vertex figurePicture
0123Alt
Nonuniformbisnub order-6 cubic ↔ irr. {3,3}

[3[3,3]] family

There are 4 forms, 0 unique, generated by ring permutations of the Coxeter group: . They are repeated in four families: ↔ (index 2 subgroup), ↔ (index 4 subgroup), ↔ (index 6 subgroup), and ↔ (index 24 subgroup).

#NameCoxeter diagram0123vertex figurePicture
[1]hexagonal (hexah) ↔ {3,3}
[47]rectified order-6 hexagonal (rihihexah) ↔ t{2,3}
[54]triangular tiling honeycomb (trah)( ↔ ) = - t{3[3]}
[55]rectified triangular (ritrah) ↔ t{2,3}
#NameCoxeter diagram0123Altvertex figurePicture
[137]alternated hexagonal (ahexah)( ↔ ) = s{3[3]}s{3[3]}s{3[3]}s{3[3]}{3,3} (4.6.6)

Summary enumerations by family

Linear graphs

Paracompact hyperbolic enumeration
GroupExtendedsymmetryHoneycombsChiralextendedsymmetryAlternation honeycombs
R ¯ 3 {\displaystyle {\bar {R}}_{3}} [4,4,3][4,4,3]15 | | | | | | | | | | | | [1+,4,1+,4,3+](6) (↔ ) (↔ ) | |
[4,4,3]+(1)
N ¯ 3 {\displaystyle {\bar {N}}_{3}} [4,4,4][4,4,4]3 | | [1+,4,1+,4,1+,4,1+](3) (↔ = ) |
[4,4,4] ↔ (3) | | [1+,4,1+,4,1+,4,1+](3) (↔ ) |
[2+[4,4,4]]3 | | [2+[(4,4+,4,2+)]](2) |
[2+[4,4,4]]+(1)
V ¯ 3 {\displaystyle {\bar {V}}_{3}} [6,3,3][6,3,3]15 | | | | | | | | | | | | [1+,6,(3,3)+](2) (↔ )
[6,3,3]+(1)
B V ¯ 3 {\displaystyle {\bar {BV}}_{3}} [6,3,4][6,3,4]15 | | | | | | | | | | | | [1+,6,3+,4,1+](6) (↔ ) (↔ ) | |
[6,3,4]+(1)
H V ¯ 3 {\displaystyle {\bar {HV}}_{3}} [6,3,5][6,3,5]15 | | | | | | | | | | | | [1+,6,(3,5)+](2) (↔ )
[6,3,5]+(1)
Y ¯ 3 {\displaystyle {\bar {Y}}_{3}} [3,6,3][3,6,3]5 | | | |
[3,6,3] ↔ (1)[2+[3+,6,3+]](1)
[2+[3,6,3]]3 | | [2+[3,6,3]]+(1)
Z ¯ 3 {\displaystyle {\bar {Z}}_{3}} [6,3,6][6,3,6]6 | | | | [1+,6,3+,6,1+](2) (↔ )
[2+[6,3,6]] ↔ (1)[2+[(6,3+,6,2+)]](2)
[2+[6,3,6]]2 |
[2+[6,3,6]]+(1)

Tridental graphs

Paracompact hyperbolic enumeration
GroupExtendedsymmetryHoneycombsChiralextendedsymmetryAlternation honeycombs
D V ¯ 3 {\displaystyle {\bar {DV}}_{3}} [6,31,1][6,31,1]4 | | |
[1[6,31,1]]=[6,3,4] ↔ (7) | | | | | | [1[1+,6,31,1]]+(2) (↔ )
[1[6,31,1]]+=[6,3,4]+(1)
O ¯ 3 {\displaystyle {\bar {O}}_{3}} [3,41,1][3,41,1]4 | | | [3+,41,1]+(2)
[1[3,41,1]]=[3,4,4] ↔ (7) | | | | | | [1[3+,41,1]]+(2) |
[1[3,41,1]]+(1)
M ¯ 3 {\displaystyle {\bar {M}}_{3}} [41,1,1][41,1,1]0(none)
[1[41,1,1]]=[4,4,4] ↔ (4) | | | [1[1+,4,1+,41,1]]+=[(4,1+,4,1+,4,2+)](4) (↔ ) | |
[3[41,1,1]]=[4,4,3] ↔ (3) | | [3[1+,41,1,1]]+=[1+,4,1+,4,3+](2) (↔ )
[3[41,1,1]]+=[4,4,3]+(1)

Cyclic graphs

Paracompact hyperbolic enumeration
GroupExtendedsymmetryHoneycombsChiralextendedsymmetryAlternation honeycombs
C R ^ 3 {\displaystyle {\widehat {CR}}_{3}} [(4,4,4,3)][(4,4,4,3)]6 | | | | | [(4,1+,4,1+,4,3+)](2)
[2+[(4,4,4,3)]]3 | | [2+[(4,4+,4,3+)]](2) |
[2+[(4,4,4,3)]]+(1)
R R ^ 3 {\displaystyle {\widehat {RR}}_{3}} [4[4]][4[4]](none)
[2+[4[4]]]1[2+[(4+,4)[2]]](1)
[1[4[4]]]=[4,41,1] ↔ (2) [(1+,4)[4]](2)
[2[4[4]]]=[4,4,4] ↔ (1)[2+[(1+,4,4)[2]]](1)
[(2+,4)[4[4]]]=[2+[4,4,4]] = (1)[(2+,4)[4[4]]]+= [2+[4,4,4]]+(1)
A V ^ 3 {\displaystyle {\widehat {AV}}_{3}} [(6,3,3,3)][(6,3,3,3)]6 | | | | |
[2+[(6,3,3,3)]]3 | | [2+[(6,3,3,3)]]+(1)
B V ^ 3 {\displaystyle {\widehat {BV}}_{3}} [(3,4,3,6)][(3,4,3,6)]6 | | | | | [(3+,4,3+,6)](1)
[2+[(3,4,3,6)]]3 | | [2+[(3,4,3,6)]]+(1)
H V ^ 3 {\displaystyle {\widehat {HV}}_{3}} [(3,5,3,6)][(3,5,3,6)]6 | | | | |
[2+[(3,5,3,6)]]3 | | [2+[(3,5,3,6)]]+(1)
V V ^ 3 {\displaystyle {\widehat {VV}}_{3}} [(3,6)[2]][(3,6)[2]]2 |
[2+[(3,6)[2]]]1
[2+[(3,6)[2]]]1
[2+[(3,6)[2]]] = (1)[2+[(3+,6)[2]]](1)
[(2,2)+[(3,6)[2]]]1[(2,2)+[(3,6)[2]]]+(1)
Paracompact hyperbolic enumeration
GroupExtendedsymmetryHoneycombsChiralextendedsymmetryAlternation honeycombs
B R ^ 3 {\displaystyle {\widehat {BR}}_{3}} [(3,3,4,4)][(3,3,4,4)]4 | | |
[1[(4,4,3,3)]]=[3,41,1] ↔ (7) | | | | | | [1[(3,3,4,1+,4)]]+= [3+,41,1]+(2) (= )
[1[(3,3,4,4)]]+= [3,41,1]+(1)
D P ¯ 3 {\displaystyle {\bar {DP}}_{3}} [3[ ]x[ ]][3[ ]x[ ]]1
[1[3[ ]x[ ]]]=[6,31,1] ↔ (2) |
[1[3[ ]x[ ]]]=[4,3[3]] ↔ (2) |
[2[3[ ]x[ ]]]=[6,3,4] ↔ (3) | | [2[3[ ]x[ ]]]+=[6,3,4]+(1)
P P ¯ 3 {\displaystyle {\bar {PP}}_{3}} [3[3,3]][3[3,3]]0(none)
[1[3[3,3]]]=[6,3[3]] ↔ 0(none)
[3[3[3,3]]]=[3,6,3] ↔ (2) |
[2[3[3,3]]]=[6,3,6] ↔ (1)
[(3,3)[3[3,3]]]=[6,3,3] = (1)[(3,3)[3[3,3]]]+= [6,3,3]+(1)

Loop-n-tail graphs

Symmetry in these graphs can be doubled by adding a mirror: [1[n,3[3]]] = [n,3,6]. Therefore ring-symmetry graphs are repeated in the linear graph families.

Paracompact hyperbolic enumeration
GroupExtendedsymmetryHoneycombsChiralextendedsymmetryAlternation honeycombs
P ¯ 3 {\displaystyle {\bar {P}}_{3}} [3,3[3]][3,3[3]]4 | | |
[1[3,3[3]]]=[3,3,6] ↔ (7) | | | | | | [1[3,3[3]]]+= [3,3,6]+(1)
B P ¯ 3 {\displaystyle {\bar {BP}}_{3}} [4,3[3]][4,3[3]]4 | | |
[1[4,3[3]]]=[4,3,6] ↔ (7) | | | | | | [1+,4,(3[3])+](2)
[4,3[3]]+(1)
H P ¯ 3 {\displaystyle {\bar {HP}}_{3}} [5,3[3]][5,3[3]]4 | | |
[1[5,3[3]]]=[5,3,6] ↔ (7) | | | | | | [1[5,3[3]]]+= [5,3,6]+(1)
V P ¯ 3 {\displaystyle {\bar {VP}}_{3}} [6,3[3]][6,3[3]]2 |
[6,3[3]] =(2)( ↔ ) | ( = )
[(3,3)[1+,6,3[3]]]=[6,3,3] ↔ ↔ (1)[(3,3)[1+,6,3[3]]]+(1)
[1[6,3[3]]]=[6,3,6] ↔ (6) | | | | | [3[1+,6,3[3]]]+= [3,6,3]+(1) ↔ (= )
[1[6,3[3]]]+= [6,3,6]+(1)

See also

Notes

References

  1. P. Tumarkin, Hyperbolic Coxeter n-polytopes with n+2 facets (2003) https://arxiv.org/abs/math/0301133.pdf