In mathematics, a parallelization of a manifold M {\displaystyle M\,} of dimension n is a set of n global smooth linearly independent vector fields.
Formal definition
Given a manifold M {\displaystyle M\,} of dimension n, a parallelization of M {\displaystyle M\,} is a set { X 1 , … , X n } {\displaystyle \{X_{1},\dots ,X_{n}\}} of n smooth vector fields defined on all of M {\displaystyle M\,} such that for every p ∈ M {\displaystyle p\in M\,} the set { X 1 ( p ) , … , X n ( p ) } {\displaystyle \{X_{1}(p),\dots ,X_{n}(p)\}} is a basis of T p M {\displaystyle T_{p}M\,} , where T p M {\displaystyle T_{p}M\,} denotes the fiber over p {\displaystyle p\,} of the tangent vector bundle T M {\displaystyle TM\,} .
A manifold is called parallelizable whenever it admits a parallelization.
Examples
- Every Lie group is a parallelizable manifold.
- The product of parallelizable manifolds is parallelizable.
- Every affine space, considered as manifold, is parallelizable.
Properties
Proposition. A manifold M {\displaystyle M\,} is parallelizable iff there is a diffeomorphism ϕ : T M ⟶ M × R n {\displaystyle \phi \colon TM\longrightarrow M\times {\mathbb {R} ^{n}}\,} such that the first projection of ϕ {\displaystyle \phi \,} is τ M : T M ⟶ M {\displaystyle \tau _{M}\colon TM\longrightarrow M\,} and for each p ∈ M {\displaystyle p\in M\,} the second factor—restricted to T p M {\displaystyle T_{p}M\,} —is a linear map ϕ p : T p M → R n {\displaystyle \phi _{p}\colon T_{p}M\rightarrow {\mathbb {R} ^{n}}\,} .
In other words, M {\displaystyle M\,} is parallelizable if and only if τ M : T M ⟶ M {\displaystyle \tau _{M}\colon TM\longrightarrow M\,} is a trivial bundle. For example, suppose that M {\displaystyle M\,} is an open subset of R n {\displaystyle {\mathbb {R} ^{n}}\,} , i.e., an open submanifold of R n {\displaystyle {\mathbb {R} ^{n}}\,} . Then T M {\displaystyle TM\,} is equal to M × R n {\displaystyle M\times {\mathbb {R} ^{n}}\,} , and M {\displaystyle M\,} is clearly parallelizable.2
See also
- Chart (topology)
- Differentiable manifold
- Frame bundle
- Orthonormal frame bundle
- Principal bundle
- Connection (mathematics)
- G-structure
- Web (differential geometry)
Notes
- Bishop, R.L.; Goldberg, S.I. (1968), Tensor Analysis on Manifolds (First Dover 1980 ed.), The Macmillan Company, ISBN 0-486-64039-6
- Milnor, J.W.; Stasheff, J.D. (1974), Characteristic Classes, Princeton University Press
References
Bishop & Goldberg (1968), p. 160 - Bishop, R.L.; Goldberg, S.I. (1968), Tensor Analysis on Manifolds (First Dover 1980 ed.), The Macmillan Company, ISBN 0-486-64039-6 https://archive.org/details/tensoranalysison00bish ↩
Milnor & Stasheff (1974), p. 15. - Milnor, J.W.; Stasheff, J.D. (1974), Characteristic Classes, Princeton University Press ↩