Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Partial algebra
Generalization of universal algebra to partial operations.

In abstract algebra, a partial algebra is a generalization of universal algebra to partial operations.

We don't have any images related to Partial algebra yet.
We don't have any YouTube videos related to Partial algebra yet.
We don't have any PDF documents related to Partial algebra yet.
We don't have any Books related to Partial algebra yet.
We don't have any archived web articles related to Partial algebra yet.

Example(s)

Structure

There is a "Meta Birkhoff Theorem" by Andreka, Nemeti and Sain (1982).5

Further reading

  • Peter Burmeister (2002) [1986]. A Model Theoretic Oriented Approach to Partial Algebras. CiteSeerX 10.1.1.92.6134.
  • Horst Reichel (1984). Structural induction on partial algebras. Akademie-Verlag.
  • Horst Reichel (1987). Initial computability, algebraic specifications, and partial algebras. Clarendon Press. ISBN 978-0-19-853806-6.

References

  1. Peter Burmeister (1993). "Partial algebras—an introductory survey". In Ivo G. Rosenberg; Gert Sabidussi (eds.). Algebras and Orders. Springer Science & Business Media. pp. 1–70. ISBN 978-0-7923-2143-9. 978-0-7923-2143-9

  2. George A. Grätzer (2008). Universal Algebra (2nd ed.). Springer Science & Business Media. Chapter 2. Partial algebras. ISBN 978-0-387-77487-9. 978-0-387-77487-9

  3. Peter Burmeister (1993). "Partial algebras—an introductory survey". In Ivo G. Rosenberg; Gert Sabidussi (eds.). Algebras and Orders. Springer Science & Business Media. pp. 1–70. ISBN 978-0-7923-2143-9. 978-0-7923-2143-9

  4. Foulis, D. J.; Bennett, M. K. (1994). "Effect algebras and unsharp quantum logics". Foundations of Physics. 24 (10): 1331. Bibcode:1994FoPh...24.1331F. doi:10.1007/BF02283036. hdl:10338.dmlcz/142815. S2CID 123349992. /wiki/Bibcode_(identifier)

  5. Peter Burmeister (1993). "Partial algebras—an introductory survey". In Ivo G. Rosenberg; Gert Sabidussi (eds.). Algebras and Orders. Springer Science & Business Media. pp. 1–70. ISBN 978-0-7923-2143-9. 978-0-7923-2143-9