Plasmonic nanoparticles exhibit unique interactions with electromagnetic radiation due to the dielectric-metal interface, enabling them to couple with wavelengths larger than their size. Unlike typical surface plasmons, these nanoparticles demonstrate distinctive scattering, absorbance, and coupling properties influenced by their shape and arrangement, making them valuable for solar cells, spectroscopy, imaging enhancement, and cancer treatment. The oscillations of free electrons called plasmons arise from dipoles induced by electromagnetic waves, with resonance at the resonant frequency. Additionally, altering nanoparticle geometry or using polarized light (see shape control) modifies their optical properties, enabling precise nanoscale light manipulation through cluster formation and electron distribution control.
Theory
The quasistatic equations that describe the scattering and absorbance cross-sections for very small spherical nanoparticles are:
σ s c a t t = 8 π 3 k 4 R 6 | ε p a r t i c l e − ε m e d i u m ε p a r t i c l e + 2 ε m e d i u m | 2 {\displaystyle {{\sigma }_{\rm {scatt}}}={\frac {8\pi }{3}}{{k}^{4}}{{R}^{6}}{{\left|{\frac {{{\varepsilon }_{\rm {particle}}}-{{\varepsilon }_{\rm {medium}}}}{{{\varepsilon }_{\rm {particle}}}+2{{\varepsilon }_{\rm {medium}}}}}\right|}^{2}}}
σ a b s = 4 π k R 3 Im | ε p a r t i c l e − ε m e d i u m ε p a r t i c l e + 2 ε m e d i u m | {\displaystyle {{\sigma }_{\rm {abs}}}=4\pi k{{R}^{3}}\operatorname {Im} \left|{\frac {{{\varepsilon }_{\rm {particle}}}-{{\varepsilon }_{\rm {medium}}}}{{{\varepsilon }_{\rm {particle}}}+2{{\varepsilon }_{\rm {medium}}}}}\right|}
where k {\displaystyle k} is the wavenumber of the electric field, R {\displaystyle R} is the radius of the particle, ε m e d i u m {\displaystyle {{\varepsilon }_{\rm {medium}}}} is the relative permittivity of the dielectric medium and ε p a r t i c l e {\displaystyle {{\varepsilon }_{\rm {particle}}}} is the relative permittivity of the nanoparticle defined by
ε p a r t i c l e = 1 − ω p 2 ω 2 + i ω γ {\displaystyle {{\varepsilon }_{\rm {particle}}}=1-{\frac {\omega _{\rm {p}}^{2}}{{{\omega }^{2}}+\mathrm {i} {\omega }{\gamma }}}}
also known as the Drude Model for free electrons where ω p {\displaystyle {{\omega }_{\rm {p}}}} is the plasma frequency, γ {\displaystyle {\gamma }} is the relaxation frequency of the charge carries, and ω {\displaystyle \omega } is the frequency of the electromagnetic radiation. This equation is the result of solving the differential equation for a harmonic oscillator with a driving force proportional to the electric field that the particle is subjected to. For a more thorough derivation, see surface plasmon.
It logically follows that the resonance conditions for these equations is reached when the denominator is around zero such that
ε p a r t i c l e + 2 ε m e d i u m ≈ 0 {\displaystyle {{\varepsilon }_{\rm {particle}}}+2{{\varepsilon }_{\rm {medium}}}\approx 0}
When this condition is fulfilled the cross-sections are at their maximum.
These cross-sections are for single, spherical particles. The equations change when particles are non-spherical, or are coupled to 1 or more other nanoparticles, such as when their geometry changes. This principle is important for several applications.
Rigorous electrodynamic analysis of plasma oscillations in a spherical metal nanoparticle of a finite size was performed in.8
Applications
Plasmonic solar cells
Main article: Plasmonic solar cell
Due to their ability to scatter light back into the photovoltaic structure and low absorption, plasmonic nanoparticles are under investigation as a method for increasing solar cell efficiency.910 Forcing more light to be absorbed by the dielectric increases efficiency.11
Plasmons can be excited by optical radiation and induce an electric current from hot electrons in materials fabricated from gold particles and light-sensitive molecules of porphin, of precise sizes and specific patterns. The wavelength to which the plasmon responds is a function of the size and spacing of the particles. The material is fabricated using ferroelectric nanolithography. Compared to conventional photoexcitation, the material produced three to 10 times the current.1213
Spectroscopy
In the past 5 years plasmonic nanoparticles have been explored as a method for high resolution spectroscopy. One group utilized 40 nm gold nanoparticles that had been functionalized such that they would bind specifically to epidermal growth factor receptors to determine the density of those receptors on a cell. This technique relies on the fact that the effective geometry of the particles change when they appear within one particle diameter (40 nm) of each other. Within that range, quantitative information on the EGFR density in the cell membrane can be retrieved based on the shift in resonant frequency of the plasmonic particles.14
Cancer treatment
Plasmonic nanoparticles have demonstrated a wide potential for the establishment of innovative cancer treatments.15 Despite that, there are still not plasmonic nanomaterials employed in the clinical practice, because the associated metal persistence.16 Preliminary research indicates that some nanomaterials, among which gold nanorods17 and ultrasmall-in-nano architectures,18 can convert IR laser light into localized heat, also in combination with other established cancer treatments.19
See also
References
Eustis, Susie; El-Sayed, Mostafa A. (2006). "Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes". Chemical Society Reviews. 35 (3): 209–217. doi:10.1039/b514191e. PMID 16505915. /wiki/Doi_(identifier) ↩
Chen, Tianhong; Pourmand, Mahshid; Feizpour, Amin; Cushman, Bradford; Reinhard, Björn M. (3 July 2013). "Tailoring Plasmon Coupling in Self-Assembled One-Dimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation". The Journal of Physical Chemistry Letters. 4 (13): 2147–2152. doi:10.1021/jz401066g. PMC 3766581. PMID 24027605. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766581 ↩
Zeng, Shuwen; Yu, Xia; Law, Wing-Cheung; Zhang, Yating; Hu, Rui; Dinh, Xuan-Quyen; Ho, Ho-Pui; Yong, Ken-Tye (January 2013). "Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement". Sensors and Actuators B: Chemical. 176: 1128–1133. Bibcode:2013SeAcB.176.1128Z. doi:10.1016/j.snb.2012.09.073. /wiki/Bibcode_(identifier) ↩
Yu, Peng; Yao, Yisen; Wu, Jiang; Niu, Xiaobin; Rogach, Andrey L.; Wang, Zhiming (9 August 2017). "Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells". Scientific Reports. 7 (1): 7696. Bibcode:2017NatSR...7.7696Y. doi:10.1038/s41598-017-08077-9. PMC 5550503. PMID 28794487. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550503 ↩
Wu, Jiang; Yu, Peng; Susha, Andrei S.; Sablon, Kimberly A.; Chen, Haiyuan; Zhou, Zhihua; Li, Handong; Ji, Haining; Niu, Xiaobin; Govorov, Alexander O.; Rogach, Andrey L.; Wang, Zhiming M. (April 2015). "Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars". Nano Energy. 13: 827–835. Bibcode:2015NEne...13..827W. doi:10.1016/j.nanoen.2015.02.012. S2CID 98282021. /wiki/Bibcode_(identifier) ↩
Hurtado-Aviles, E.A.; Torres, J.A.; Trejo-Valdez, M.; Urriolagoitia-Sosa, G.; Villalpando, I.; Torres-Torres, C. (28 October 2017). "Acousto-Plasmonic Sensing Assisted by Nonlinear Optical Interactions in Bimetallic Au-Pt Nanoparticles". Micromachines. 8 (11): 321. doi:10.3390/mi8110321. PMC 6189711. PMID 30400510. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189711 ↩
Chuntonov, Lev; Haran, Gilad (8 June 2011). "Trimeric Plasmonic Molecules: The Role of Symmetry". Nano Letters. 11 (6): 2440–2445. Bibcode:2011NanoL..11.2440C. doi:10.1021/nl2008532. PMID 21553898. /wiki/Bibcode_(identifier) ↩
Belyaev, B.A.; Tyurnev, V.V. (August 2016). "Resonances of electromagnetic oscillations in a spherical metal nanoparticle". Microwave and Optical Technology Letters. 58 (8): 1883–1886. doi:10.1002/mop.29930. /wiki/Doi_(identifier) ↩
Yue, Zengji; Cai, Boyuan; Wang, Lan; Wang, Xiaolin; Gu, Min (4 March 2016). "Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index". Science Advances. 2 (3): e1501536. Bibcode:2016SciA....2E1536Y. doi:10.1126/sciadv.1501536. PMC 4820380. PMID 27051869. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820380 ↩
Yu, Peng; Yao, Yisen; Wu, Jiang; Niu, Xiaobin; Rogach, Andrey L.; Wang, Zhiming (9 August 2017). "Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells". Scientific Reports. 7 (1): 7696. Bibcode:2017NatSR...7.7696Y. doi:10.1038/s41598-017-08077-9. PMC 5550503. PMID 28794487. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550503 ↩
Ferry, Vivian E.; Munday, Jeremy N.; Atwater, Harry A. (16 November 2010). "Design Considerations for Plasmonic Photovoltaics". Advanced Materials. 22 (43): 4794–4808. Bibcode:2010AdM....22.4794F. doi:10.1002/adma.201000488. PMID 20814916. /wiki/Bibcode_(identifier) ↩
"A new method for harvesting energy from light". Kurzweil Accelerating Intelligence. Kurzweil Library. September 12, 2013. Retrieved 9 Feb 2020. http://www.kurzweilai.net/a-new-method-for-harvesting-energy-from-light ↩
Conklin, David; Nanayakkara, Sanjini; Park, Tae-Hong; Lagadec, Marie F.; Stecher, Joshua T.; Chen, Xi; Therien, Michael J.; Bonnell, Dawn A. (28 May 2013). "Exploiting Plasmon-Induced Hot Electrons in Molecular Electronic Devices". ACS Nano. 7 (5): 4479–4486. doi:10.1021/nn401071d. PMID 23550717. /wiki/Doi_(identifier) ↩
Wang, Jing; Boriskina, Svetlana V.; Wang, Hongyun; Reinhard, Björn M. (23 August 2011). "Illuminating Epidermal Growth Factor Receptor Densities on Filopodia through Plasmon Coupling". ACS Nano. 5 (8): 6619–6628. doi:10.1021/nn202055b. PMC 3204364. PMID 21761914. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204364 ↩
Cassano, Domenico; Pocoví-Martínez, Salvador; Voliani, Valerio (17 January 2018). "Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics". Bioconjugate Chemistry. 29 (1): 4–16. doi:10.1021/acs.bioconjchem.7b00664. PMID 29186662. https://doi.org/10.1021%2Facs.bioconjchem.7b00664 ↩
Cassano, Domenico; Pocoví-Martínez, Salvador; Voliani, Valerio (17 January 2018). "Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics". Bioconjugate Chemistry. 29 (1): 4–16. doi:10.1021/acs.bioconjchem.7b00664. PMID 29186662. https://doi.org/10.1021%2Facs.bioconjchem.7b00664 ↩
C.S., Rejiya; Kumar, Jatish; V., Raji; M., Vibin; Abraham, Annie (February 2012). "Laser immunotherapy with gold nanorods causes selective killing of tumour cells". Pharmacological Research. 65 (2): 261–269. doi:10.1016/j.phrs.2011.10.005. PMID 22115972. /wiki/Doi_(identifier) ↩
Cassano, Domenico; Santi, Melissa; D’Autilia, Francesca; Mapanao, Ana Katrina; Luin, Stefano; Voliani, Valerio (2019). "Photothermal effect by NIR-responsive excretable ultrasmall-in-nano architectures". Materials Horizons. 6 (3): 531–537. doi:10.1039/C9MH00096H. hdl:11384/77439. https://doi.org/10.1039%2FC9MH00096H ↩
Mapanao, Ana Katrina; Santi, Melissa; Voliani, Valerio (January 2021). "Combined chemo-photothermal treatment of three-dimensional head and neck squamous cell carcinomas by gold nano-architectures". Journal of Colloid and Interface Science. 582 (Pt B): 1003–1011. Bibcode:2021JCIS..582.1003M. doi:10.1016/j.jcis.2020.08.059. PMID 32927167. S2CID 221723222. /wiki/Bibcode_(identifier) ↩